Math 126 Fall 2025 Dr. Lily Yen

Test 2

Show all your work

Full Name: Student Number: Signature: Score: /41

No Calculator permitted in this part. Read the questions carefully. Show all your work and clearly indicate your final answer. Use proper notation.

Problem 1: Evaluate the following integrals analytically.

a.
$$\int t^3 \ln(t) dt$$

Using integration by parts,

$$\int t^3 \ln(t) dt = \frac{1}{4} t^4 \ln(t) - \int \frac{1}{4} t^4 \cdot \frac{1}{t} dt$$
$$= \frac{1}{4} t^4 \ln(t) - \int \frac{1}{4} t^3 dt$$
$$= \frac{1}{4} t^4 \ln(t) - \frac{1}{16} t^4 + C$$

Score: /3

b.
$$\int x \tan^{-1}(x) dx$$

Using integration by parts,

$$\int x \tan^{-1}(x) dx = \frac{1}{2}x^2 \tan^{-1}(x) - \int \frac{1}{2}x^2 \cdot \frac{1}{x^2 + 1} dx$$

$$= \frac{1}{2}x^2 \tan^{-1}(x) - \frac{1}{2} \int \frac{(x^2 + 1) - 1}{x^2 + 1} dx$$

$$= \frac{1}{2}x^2 \tan^{-1}(x) - \frac{1}{2} \int 1 - \frac{1}{x^2 + 1} dx$$

$$= \frac{1}{2}x^2 \tan^{-1}(x) - \frac{1}{2}x + \frac{1}{2}\tan^{-1}(x) + C$$

/3Score:

Problem 2: Determine analytically the convergence of the following integral.

$$\int_{1}^{\infty} \frac{\cos(x) + 2}{\sqrt{x}} \, dx$$

Note that $\frac{\cos(x)+2}{\sqrt{x}} \ge \frac{1}{\sqrt{x}}$ for all x. Therefore

$$\int_{1}^{\infty} \frac{\cos(x)+2}{\sqrt{x}} dx \ge \int_{1}^{\infty} \frac{1}{\sqrt{x}} dx = \lim_{z \to \infty} \int_{1}^{z} \frac{1}{\sqrt{x}} dx = \lim_{z \to \infty} 2\sqrt{x} \Big|_{1}^{z} = \lim_{z \to \infty} 2\sqrt{z} - 2 = \infty, \text{ so}$$

$$\int_{1}^{\infty} \frac{\cos(x) + 2}{\sqrt{x}} \, dx = \infty$$

Score: /3 Problem 3: Evaluate if possible, otherwise state why the integral does not exist.

$$\int_{0}^{5} \frac{1}{\sqrt[3]{x-3}} \, dx$$

The integrand is undefined at x = 3, so split the interval of integration:

$$\int_0^3 \frac{1}{(x-3)^{1/3}} dx = \lim_{z \to 3^-} \int_0^z \frac{1}{(x-3)^{1/3}} dx$$

$$= \lim_{z \to 3^-} \frac{3}{2} (x-3)^{2/3} \Big|_0^z$$

$$= \lim_{z \to 3^-} \frac{3}{2} (z-3)^{2/3} - \frac{3}{2} (-3)^{2/3} = 0 - \frac{3}{2} 3^{2/3}$$

Similarly, $\int_3^5 \frac{1}{(x-3)^{1/3}} dx = \frac{3}{2} 2^{2/3}$. Hence

$$\int_0^5 \frac{1}{(x-3)^{1/3}} \, dx = \frac{3}{2} 2^{2/3} - \frac{3}{2} 3^{2/3}$$

Score: /4

Problem 4: Find the indefinite integral: $\int e^{-x} \cos(2x) dx$.

Using integration by parts twice,

$$\int e^{-x} \cos(2x) \, dx = -e^{-x} \cos(2x) - \int -e^{-x} (-2) \sin(2x) \, dx$$

$$= -e^{-x} \cos(2x) - 2 \int e^{-x} \sin(2x) \, dx$$

$$= -e^{-x} \cos(2x) - 2 \left(-e^{-x} \sin(2x) - \int -e^{-x} 2 \cos(2x) \, dx \right)$$

$$= -e^{-x} \cos(2x) + 2e^{-x} \sin(2x) - 4 \int e^{-x} \cos(2x) \, dx + C$$

Therefore $5 \int e^{-x} \cos(2x) dx = -e^{-x} \cos(2x) + 2e^{-x} \sin(2x) + C$, so

$$\int e^{-x}\cos(2x) dx = -\frac{1}{5}e^{-x}\cos(2x) + \frac{2}{5}e^{-x}\sin(2x) + C_2$$

Score: /4

/8

Page 2 Math 126

Math 126 Fall 2025

Test 2

Full Name:

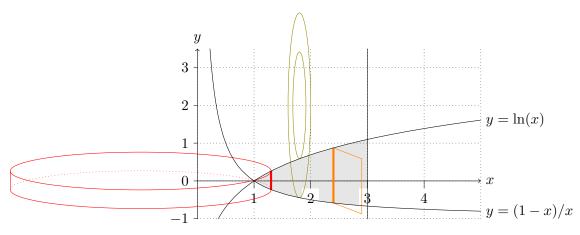
Dr. Lily Yen

Show all your work

Student Number:

Calculators permitted from here on.

Problem 5: Draw $y_1 = \frac{1-x}{x}$ and $y_2 = \ln(x)$ on the grid. Shade the region bounded by these two graphs and the line x = 3.



Use integrals to express the following. Do NOT EVALUATE YOUR INTEGRALS. Draw a cross-sectional strip for each solid.

a. The area of the region enclosed by y_1 , y_2 , and x = 3.

$$\int_{1}^{3} \ln(x) - \frac{1-x}{x} \, dx = x \ln(x) - (-x + \ln(x)) \Big|_{1}^{3} = x \ln(x) - \ln(x) \Big|_{1}^{3} = 2 \ln(3)$$

Score: /2

b. The volume of a solid that has the shaded region as its base, and cross-sections perpendicular to the x-axis are squares .

$$\int_{1}^{3} \left(\ln(x) - \frac{1-x}{x} \right)^{2} dx = x(\ln x)^{2} - (\ln x)^{2} + x - 2\ln(x) - \frac{1}{x} \Big|_{1}^{3} = 2(\ln 3)^{2} - 2\ln(x) + \frac{8}{3}$$

Score: /2

c. The volume of the solid obtained by rotating the region around x = -1.

Using cylindrical shells, the volume is

$$\int_{1}^{3} 2\pi (x+1) \left(\ln(x) - \frac{1-x}{x} \right) dx = \dots = 13\pi \ln(3) \approx 44.87$$

Score: /2

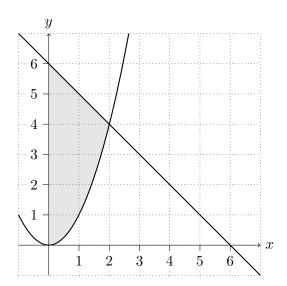
d. The volume of the solid obtained by rotating the region around y = 2.

Using washers, the volume is

$$\int_{1}^{3} \pi \left(2 - \frac{1 - x}{x}\right)^{2} - \pi (2 - \ln(x))^{2} dx = \dots = 12\pi \ln(3) - 3\pi (\ln 3)^{2} - \frac{4}{3}\pi \approx 25.85$$

Score: /2

Problem 6: Consider the region bounded by the y-axis, x + y = 6, and $y = x^2$ in the first quadrant. Draw the region and set up the expression for the perimeter of the region. All straight line segments in the perimeter must be computed exactly as a number or square root; only the curved border may be expressed as a definite integral. Do no evaluate.



$$6 + 2\sqrt{2} + \int_0^2 \sqrt{1 + (2x)^2} \, dx = 6 + 2\sqrt{2} + \left(\frac{1}{2}x\sqrt{4x^2 + 1} + \frac{1}{4}\sinh^{-1}(2x)\right)\Big|_0^2$$
$$= 6 + 2\sqrt{2} + \sqrt{17} - \frac{1}{4}\ln(\sqrt{17} - 4)$$
$$\approx 13.48$$
 Score: /4

Problem 7: Use the method of partial fractions to integrate the following.

$$\int \frac{3x-2}{(2x-5)(x+1)} \, dx$$

By partial fractions,

$$\frac{3x-2}{(2x-5)(x+1)} = \frac{A}{2x-5} + \frac{B}{x+1},$$

so 3x - 2 = A(x + 1) + B(2x - 5). If $x = \frac{5}{2}$, that yields that $\frac{11}{2} = \frac{7}{2}A + 0$, so $A = \frac{11}{7}$. Similarly, is x = -1, then -5 = 0 - 7B, so $B = \frac{5}{7}$. Hence,

$$\int \frac{3x-2}{(2x-5)(x+1)} dx = \int \frac{11}{7(2x-5)} + \frac{5}{7(x+1)} dx = \frac{11}{14} \ln|2x-5| + \frac{5}{7} \ln|x+1| + C$$

Score: /4

Page 4 Math 126

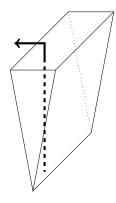
Problem 8: A spring has a natural length of 0.8 m. A force of 24 N stretches the spring to a total length of 2 m. Find the work required to stretch the spring 1.5 m beyond its natural length.

The force needed to stretch a spring a distance of x beyond the natural length is F = kx. Here $k = \frac{F}{x} = \frac{24 \,\mathrm{N}}{1.2 \,\mathrm{m}} = 20 \,\mathrm{N/m}$. The work is then

$$\int_{0 \,\mathrm{m}}^{1.5 \,\mathrm{m}} F \, dx = \int_{0 \,\mathrm{m}}^{1.5 \,\mathrm{m}} kx \, dx = \frac{1}{2} kx^2 \Big|_{0 \,\mathrm{m}}^{1.5 \,\mathrm{m}}$$
$$= \frac{1}{2} \times 20 \,\mathrm{N/m} \times 2.25 \,\mathrm{m}^2 - 0 = 22.5 \,\mathrm{Nm} = 22.5 \,\mathrm{J}$$

Score: /3

Problem 9: A tank in the shape of a triangular prism of length 10 m whose vertical cross sections are isosceles triangles of height 8 m and base 3 m is buried 1 m below ground and filled with a fluid of density 200 kg/m³. Find the work required to pump all the fluid out of the tank from a valve at ground level.



The liquid at distance x from the bottom has width $\frac{3}{8}x$, so it's volume element from a rectangular horizontal slice is $\frac{3}{8}x \times 10 \, dx = \frac{15}{4}x \, dx$, so it has mass $200 \times \frac{15}{4}x \, dx = 750x \, dx$. That mass has to be lifted a distance of 9-x against gravity, so the required work is

$$\int_0^8 750xg(9-x) dx = 750g \left(\frac{9}{2}x^2 - \frac{1}{3}x^3 \right) \Big|_0^8 \approx 863 \,\text{kJ}$$

if $g = 9.81 \,\mathrm{m/s^2}$.

Score: /5

Math 126 Page 5