CHAPTER IV

AN ALGORITHM FOR CERTIFYING $\sum_{\mathbf{k}} F(n, \mathbf{k}) = f_n$

In this chapter, we will develop the *r*-variable analogues of the algorithm in Chapter 2. We will take the values of $I_1^*, I_2^*, \ldots, I_r^*$ and J^* from Chapter 3, and input them into the algorithm to obtain directly $a_0(n), a_1(n), \ldots, a_J(n)$, not all zero, and rational functions $R_1(n, \mathbf{k}), R_2(n, \mathbf{k}), \ldots, R_r(n, \mathbf{k}).$

Here Theorem 4.2A, the analogue of Theorem 3.2A in [WZ3] is what we need to construct the algorithm.

Theorem 4.1. [WZ3, Theorem 4.2A] Let F be a proper-hypergeometric term. Then there are a positive integer J, polynomials $a_0(n), a_1(n), \ldots, a_J(n)$ and hypergeometric functions G_1, \ldots, G_r such that for every $(n, \mathbf{k}) \in \mathbb{N}^{r+1}$ at which $F \neq 0$ and F is well-defined at all of the arguments that appear in

(4.1)
$$\sum_{\mathbf{i}=0}^{\mathbf{I}} \sum_{j=0}^{J} \alpha(\mathbf{i}, j, n) F(n-j, \mathbf{k}-\mathbf{i}) = 0$$

we have

(4.2)
$$\sum_{j=0}^{J} a_j(n) F(n-j,\mathbf{k}) = \sum_{i=1}^{r} (G_i(n,k_1,\ldots,k_i,\ldots,k_r) - G_i(n,k_1,\ldots,k_i-1,\ldots,k_r)).$$

Moreover this recurrence is non-trivial, and each $G_i(n, \mathbf{k})$ is of the form $R_i(n, \mathbf{k})F(n, \mathbf{k})$, where the R's are rational functions of their arguments.

In the proof of Theorem 4.1 in [WZ3], we let N be the operator that shifts (down) the variable n, that is Nf(n) = f(n-1). Further, for each i = 1, ..., r we let K_i be the

operator that shifts the variable k_i , that is $K_i f(\mathbf{k}) = f(k_1, \dots, k_{i-1}, k_i - 1, k_{i+1}, \dots, k_r)$. Then (4.1) is equivalent to an assertion

$$H(N, n, K_1, \ldots, K_r)F(n, \mathbf{k}) = 0,$$

where H is a polynomial in its arguments and does not involve k. We can expand H in a Taylor's series about $\mathbf{K} = \mathbf{1}$, to obtain

$$H(N, n, \mathbf{K}) = H(N, n, \mathbf{1}) + \sum_{i=1}^{r} (K_i - 1) V_i(N, n, \mathbf{K})$$

in which the V_i 's are polynomials in their arguments. We apply the right hand side of the last equality to $F(n, \mathbf{k})$, and (4.2) follows.

We generalize the idea from Chapter 2 to the multivariable case. From Chapter 3, we can compute the upper bounds for \mathbf{I}^* and J^* which are used to find the degree in \mathbf{k} of the numerator polynomial of $R_i(n, \mathbf{k})$, $i \in [r]$. Into (4.2), we substitute

$$\sum_{\substack{\mathbf{0} \leq \mathbf{e} \leq (\mathcal{N}_i, \mathcal{N}_i, \dots, \mathcal{N}_i)\\ \mathbf{e} \cdot \mathbf{1} \leq \mathcal{N}_i}} \frac{c_i(\mathbf{e}, n) \mathbf{k}^{\mathbf{e}}}{D_{R_i}(n, \mathbf{k})}$$

for $R_i(n, \mathbf{k})$ where the $c_i(\mathbf{e}, n)$ are unknown polynomials in n. The procedure that follows yields a homogeneous linear system with the c_i 's and a_j 's as the unknowns for which a solution is guaranteed by [WZ3, Theorem 4.1].

Algorithm for the Certificate

Step 1. Rename k_i 's so that $I_1 \ge I_2 \ge \cdots \ge I_r$ for the given I_i 's.

Step 2. Obtain $\sum_{i=1}^{r} (K_i - 1)V_i(N, n, \mathbf{K})$ in the following way. For the Taylor's series expansion of $H(N, n, \mathbf{K})$ about $\mathbf{K} = \mathbf{1}$, we first sum all terms that are divisible

by $(K_1 - 1)$, factor $(K_1 - 1)$ to make the sum equal to $(K_1 - 1)V_1(N, n, \mathbf{K})$. The remaining terms of $H(N, n, \mathbf{K})$ are no longer divisible by $(K_1 - 1)$. We then proceed to sum all the remaining terms that are divisible by $(K_2 - 1)$, and get $(K_2 - 1)V_2(N, n, K_2, ..., K_r)$ as the sum. Successively we sum the terms until we reach the last sum, namely, $(K_r - 1)V_r(N, n, K_r)$.

Step 3. Divide (4.2) by $F(n, \mathbf{k})$ on both sides to get

(4.3)
$$\sum_{j=0}^{J} \frac{a_j(n)F(n-j,\mathbf{k})}{F(n,\mathbf{k})} = \sum_{i=1}^{r} \left(R_i(n,k_1,k_2,\dots,k_r) - \frac{R_i(n,k_1,\dots,k_i-1,\dots,k_r)F(n,k_1,\dots,k_i-1,\dots,k_r)}{F(n,\mathbf{k})} \right).$$

Step 4. Into (4.3), substitute for $R_i(n, \mathbf{k})$

$$\sum_{\substack{0 \le j \le J \\ \mathbf{0} \le \mathbf{i} \le (0,\dots,0,I_i-1,I_{i+1},\dots,I_r)}} \frac{d(\mathbf{i},j,n)F(n-j,\mathbf{k}-\mathbf{i})}{F(n,\mathbf{k})}$$

where d's are polynomials in n only.

Step 5. Compute a common denominator for $R_i(n, \mathbf{k})$, i.e.,

$$D_{R_{i}}(n,\mathbf{k}) = P(n,\mathbf{k}) \prod_{s=1}^{p} (a_{s}n + \mathbf{b}_{s} \cdot \mathbf{k} + c_{s})^{(a_{s})^{+}J + (I_{i}-1)(b_{is})^{+} + \sum_{i < t \leq r} I_{t}(b_{ts})^{+}} \\ \times \prod_{s=1}^{q} (u_{s}n + \mathbf{v}_{s} \cdot \mathbf{k} + w_{s} + 1)^{\overline{(-u_{s})^{+}J + (I_{i}-1)(-v_{is})^{+} + \sum_{i < t \leq r} I_{t}(-v_{ts})^{+}}}$$

Step 6. Calculate the degree in \mathbf{k} of the numerator polynomial $N_{R_i}(n, \mathbf{k})$ over the denominator polynomial $D_{R_i}(n, \mathbf{k})$.

 $\mathcal{N}_i := \deg_{\mathbf{k}} P(n, \mathbf{k}) + (I_i - 1)(\mathcal{B}_i + (V_i - B_i)^+) + J(\mathcal{A} + (U - A)^+) + \sum_{i < t \le r} I_t(\mathcal{B}_t + (V_t - B_t)^+),$

where (as in Chapter 3)

$$U := \sum_{\substack{s \\ \mathbf{v}_s \neq 0}} u_s, \quad V_l := \sum_s v_{ls}, \quad A := \sum_{\substack{s \\ \mathbf{b}_s \neq 0}} a_s, \quad B_l := \sum_s b_{ls},$$

•

and

$$\mathcal{A} := \sum_{\substack{s \\ \mathbf{b}_s \neq 0}} (a_s)^+ + \sum_{\substack{s \\ \mathbf{v}_s \neq 0}} (-u_s)^+, \quad \mathcal{B}_l := \sum_s (b_{ls})^+ + \sum_s (-v_{ls})^+.$$

Step 7. Conclude that $R_i(n, \mathbf{k})$ has the form

$$\sum_{\substack{\mathbf{0} \leq \mathbf{e} \leq (\mathcal{N}_i, \mathcal{N}_i, \dots, \mathcal{N}_i) \\ \mathbf{e} \cdot \mathbf{1} \leq \mathcal{N}_i}} \frac{c_i(\mathbf{e}, n) \mathbf{k}^{\mathbf{e}}}{D_{R_i}(n, \mathbf{k})}$$

Step 8. Substitute R_i 's into (4.3), and collect all terms to one side of the equal sign.

- Step 9. Find a common denominator for the resulting expression and make the coefficients of each monomial in \mathbf{k} zero.
- Step 10. Solve the resulting system of homogeneous equations for the a_j 's and c_i 's. Again we are guaranteed that a solution exists from Theorem 4.1 in [WZ3].