CHAPTER IV

AN ALGORITHM FOR CERTIFYING $\sum_{\mathbf{k}} F(n, \mathbf{k})=f_{n}$

In this chapter, we will develop the r-variable analogues of the algorithm in Chapter 2. We will take the values of $I_{1}^{*}, I_{2}^{*}, \ldots, I_{r}^{*}$ and J^{*} from Chapter 3 , and input them into the algorithm to obtain directly $a_{0}(n), a_{1}(n), \ldots, a_{J}(n)$, not all zero, and rational functions $R_{1}(n, \mathbf{k}), R_{2}(n, \mathbf{k}), \ldots, R_{r}(n, \mathbf{k})$.

Here Theorem 4.2A, the analogue of Theorem 3.2A in [WZ3] is what we need to construct the algorithm.

Theorem 4.1. [WZ3, Theorem 4.2A] Let F be a proper-hypergeometric term. Then there are a positive integer J, polynomials $a_{0}(n), a_{1}(n), \ldots, a_{J}(n)$ and hypergeometric functions G_{1}, \ldots, G_{r} such that for every $(n, \mathbf{k}) \in \mathbb{N}^{r+1}$ at which $F \neq 0$ and F is well-defined at all of the arguments that appear in

$$
\begin{equation*}
\sum_{\mathbf{i}=0}^{\mathbf{I}} \sum_{j=0}^{J} \alpha(\mathbf{i}, j, n) F(n-j, \mathbf{k}-\mathbf{i})=0 \tag{4.1}
\end{equation*}
$$

we have

$$
\begin{equation*}
\sum_{j=0}^{J} a_{j}(n) F(n-j, \mathbf{k})=\sum_{i=1}^{r}\left(G_{i}\left(n, k_{1}, \ldots, k_{i}, \ldots, k_{r}\right)-G_{i}\left(n, k_{1}, \ldots, k_{i}-1, \ldots, k_{r}\right)\right) \tag{4.2}
\end{equation*}
$$

Moreover this recurrence is non-trivial, and each $G_{i}(n, \mathbf{k})$ is of the form $R_{i}(n, \mathbf{k}) F(n, \mathbf{k})$, where the R 's are rational functions of their arguments.

In the proof of Theorem 4.1 in [WZ3], we let N be the operator that shifts (down) the variable n, that is $N f(n)=f(n-1)$. Further, for each $i=1, \ldots, r$ we let K_{i} be the
operator that shifts the variable k_{i}, that is $K_{i} f(\mathbf{k})=f\left(k_{1}, \ldots, k_{i-1}, k_{i}-1, k_{i+1}, \ldots, k_{r}\right)$. Then (4.1) is equivalent to an assertion

$$
H\left(N, n, K_{1}, \ldots, K_{r}\right) F(n, \mathbf{k})=0,
$$

where H is a polynomial in its arguments and does not involve \mathbf{k}. We can expand H in a Taylor's series about $\mathbf{K}=\mathbf{1}$, to obtain

$$
H(N, n, \mathbf{K})=H(N, n, \mathbf{1})+\sum_{i=1}^{r}\left(K_{i}-1\right) V_{i}(N, n, \mathbf{K})
$$

in which the V_{i} 's are polynomials in their arguments. We apply the right hand side of the last equality to $F(n, \mathbf{k})$, and (4.2) follows.

We generalize the idea from Chapter 2 to the multivariable case. From Chapter 3, we can compute the upper bounds for \mathbf{I}^{*} and J^{*} which are used to find the degree in \mathbf{k} of the numerator polynomial of $R_{i}(n, \mathbf{k}), i \in[r]$. Into (4.2), we substitute

$$
\sum_{\substack{\mathbf{0} \leq \mathbf{e} \leq\left(\mathcal{N}_{i}, \mathcal{N}_{i}, \ldots, \mathcal{N}_{i}\right) \\ \mathbf{e} \cdot \mathbf{1} \leq \mathcal{N}_{i}}} \frac{c_{i}(\mathbf{e}, n) \mathbf{k}^{\mathbf{e}}}{D_{R_{i}}(n, \mathbf{k})}
$$

for $R_{i}(n, \mathbf{k})$ where the $c_{i}(\mathbf{e}, n)$ are unknown polynomials in n. The procedure that follows yields a homogeneous linear system with the c_{i} 's and a_{j} 's as the unknowns for which a solution is guaranteed by [WZ3, Theorem 4.1].

Algorithm for the Certificate

Step 1. Rename k_{i} 's so that $I_{1} \geq I_{2} \geq \cdots \geq I_{r}$ for the given I_{i} 's.
Step 2. Obtain $\sum_{i=1}^{r}\left(K_{i}-1\right) V_{i}(N, n, \mathbf{K})$ in the following way. For the Taylor's series expansion of $H(N, n, \mathbf{K})$ about $\mathbf{K}=\mathbf{1}$, we first sum all terms that are divisible
by $\left(K_{1}-1\right)$, factor $\left(K_{1}-1\right)$ to make the sum equal to $\left(K_{1}-1\right) V_{1}(N, n, \mathbf{K})$. The remaining terms of $H(N, n, \mathbf{K})$ are no longer divisible by $\left(K_{1}-1\right)$. We then proceed to sum all the remaining terms that are divisible by $\left(K_{2}-1\right)$, and get $\left(K_{2}-1\right) V_{2}\left(N, n, K_{2}, \ldots, K_{r}\right)$ as the sum. Successively we sum the terms until we reach the last sum, namely, $\left(K_{r}-1\right) V_{r}\left(N, n, K_{r}\right)$.

Step 3. Divide (4.2) by $F(n, \mathbf{k})$ on both sides to get

$$
\begin{align*}
\sum_{j=0}^{J} \frac{a_{j}(n) F(n-j, \mathbf{k})}{F(n, \mathbf{k})} & =\sum_{i=1}^{r}\left(R_{i}\left(n, k_{1}, k_{2}, \ldots, k_{r}\right)\right. \tag{4.3}\\
& \left.-\frac{R_{i}\left(n, k_{1}, \ldots, k_{i}-1, \ldots, k_{r}\right) F\left(n, k_{1}, \ldots, k_{i}-1, \ldots, k_{r}\right)}{F(n, \mathbf{k})}\right) .
\end{align*}
$$

Step 4. Into (4.3), substitute for $R_{i}(n, \mathbf{k})$

$$
\sum_{\substack{\left.0 \leq j \leq J \\ ., 0, I_{i}-1, I_{i+1}, \ldots, I_{r}\right)}} \frac{d(\mathbf{i}, j, n) F(n-j, \mathbf{k}-\mathbf{i})}{F(n, \mathbf{k})}
$$

where d 's are polynomials in n only.
Step 5. Compute a common denominator for $R_{i}(n, \mathbf{k})$, i.e.,

$$
\begin{aligned}
D_{R_{i}}(n, \mathbf{k})=P(n, \mathbf{k}) & \prod_{s=1}^{p}\left(a_{s} n+\mathbf{b}_{s} \cdot \mathbf{k}+c_{s}\right)^{\left(a_{s}\right)^{+} J+\left(I_{i}-1\right)\left(b_{i s}\right)^{+}+\sum_{i<t \leq r} I_{t}\left(b_{t s}\right)^{+}} \\
& \times \prod_{s=1}^{q}\left(u_{s} n+\mathbf{v}_{s} \cdot \mathbf{k}+w_{s}+1\right)^{\overline{\left(-u_{s}\right)^{+} J+\left(I_{i}-1\right)\left(-v_{i s}\right)^{+}+\sum_{i<t \leq r} I_{t}\left(-v_{t s}\right)^{+}}} .
\end{aligned}
$$

Step 6. Calculate the degree in \mathbf{k} of the numerator polynomial $N_{R_{i}}(n, \mathbf{k})$ over the denominator polynomial $D_{R_{i}}(n, \mathbf{k})$.
$\mathcal{N}_{i}:=\operatorname{deg}_{\mathbf{k}} P(n, \mathbf{k})+\left(I_{i}-1\right)\left(\mathcal{B}_{i}+\left(V_{i}-B_{i}\right)^{+}\right)+J\left(\mathcal{A}+(U-A)^{+}\right)+\sum_{i<t \leq r} I_{t}\left(\mathcal{B}_{t}+\left(V_{t}-B_{t}\right)^{+}\right)$, where (as in Chapter 3)

$$
U:=\sum_{\substack{s \\ \mathbf{v}_{s} \neq 0}} u_{s}, \quad V_{l}:=\sum_{s} v_{l s}, \quad A:=\sum_{\substack{s \\ \mathbf{b}_{s} \neq 0}} a_{s}, \quad B_{l}:=\sum_{s} b_{l s},
$$

and

$$
\mathcal{A}:=\sum_{\substack{s \\ \mathbf{b}_{s} \neq 0}}\left(a_{s}\right)^{+}+\sum_{\substack{s \\ \mathbf{v}_{s} \neq 0}}\left(-u_{s}\right)^{+}, \quad \mathcal{B}_{l}:=\sum_{s}\left(b_{l s}\right)^{+}+\sum_{s}\left(-v_{l s}\right)^{+} .
$$

Step 7. Conclude that $R_{i}(n, \mathbf{k})$ has the form

$$
\sum_{\substack{\mathbf{0} \leq \mathbf{e} \leq\left(\mathcal{N}_{i}, \mathcal{N}_{i}, \ldots, \mathcal{N}_{i}\right) \\ \mathbf{e} \cdot \mathbf{1} \leq \mathcal{N}_{i}}} \frac{c_{i}(\mathbf{e}, n) \mathbf{k}^{\mathbf{e}}}{D_{R_{i}}(n, \mathbf{k})} .
$$

Step 8. Substitute R_{i} 's into (4.3), and collect all terms to one side of the equal sign.
Step 9. Find a common denominator for the resulting expression and make the coefficients of each monomial in \mathbf{k} zero.

Step 10. Solve the resulting system of homogeneous equations for the a_{j} 's and c_{i} 's. Again we are guaranteed that a solution exists from Theorem 4.1 in [WZ3].

