
CHAPTER I

THE ORDER OF THE RECURRENCE FOR F (n, k)

We show slightly better upper bounds for the order of the recurrence satisfied by a given

proper-hypergeometric term F (n, k). We follow the proof of Theorem 3.1 in [WZ3] and

hold fast unto the estimates to obtain our bounds.

Definition 1.1. [WZ3] A proper-hypergeometric term is a function of the form

(1.1) F (n, k) = P (n, k)
∏p

s=1(asn + bsk + cs)!∏q
s=1(usn + vsk + ws)!

ξk,

where P is a polynomial and ξ is a parameter. The a’s, b’s, u’s and v’s are assumed to be

specific integers, i.e., they are integers and do not depend on any other parameters. The

c’s and the w’s are also integers, but they may depend on parameters. We will say that

F is well-defined at (n, k) if none of the numbers {asn + bsk + cs}p
1 is a negative integer.

We will say that F (n, k) = 0 if F is well-defined at (n, k) and at least one of the numbers

{usn + vsk + ws}q
1 is a negative integer, or P (n, k) = 0.

Definition 1.2. [WZ3] A proper-hypergeometric term F is said to satisfy a k-free recur-

rence at a point (n0, k0) ∈ Z2 if there are integers I, J and polynomials αi,j = αi,j(n) that

do not depend on k and are not all zero, such that the relation

(1.2)
I∑

i=0

J∑

j=0

αi,j(n)F (n− j, k − i) = 0

holds for all (n, k) in some R2 neighborhood of (n0, k0), in the sense that F is well-defined

at all of the arguments that occur, and the relation (1.2) is true.
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Theorem 1.3. [WZ3, Theorem 3.1] Every proper-hypergeometric term F satisfies a non-

trivial k-free recurrence relation. Indeed there exist I,J and polynomials αi,j(n) (i =

0, . . . , I; j = 0, . . . , J) not all zero, such that (1.2) holds at every point (n0, k0) ∈ Z2 for

which F (n0, k0) 6= 0 and all of the values F (n0 − j, k0 − i) that occur in (1.2) are well-

defined. Furthermore there exists such a recurrence with (I, J) = (I∗, J∗), where

(1.3) J∗ =
∑

s

|bs|+
∑

s

|vs|, I∗ = 1 + deg(P ) + J∗
((∑

s

|as|+
∑

s

|us|
)
− 1

)
.

1.1 Slightly better upper bounds

Notation. We let x+ := max{0, x}. The set {1, 2, . . . , I} is denoted by [I], and [I]0 means

[I]∪{0}. We let xm denote x(x−1) · · · (x−m+1), and xm denote x(x+1) · · · (x+m−1)

for positive integers m. We define x0 = 1 = x0.

We improve the bounds for I∗ and J∗ by

Theorem 1.4. Let

U :=
∑

s
vs 6=0

us, V :=
∑

s

vs, A :=
∑

s
bs 6=0

as, B :=
∑

s

bs,

A :=
∑

s
bs 6=0

(as)+ +
∑

s
vs 6=0

(−us)+, B :=
∑

s

(bs)+ +
∑

s

(−vs)+,

and δ = degk P (n, k). Then J∗ and I∗ in (1.3) of Theorem 1.3 can be replaced by

J∗ = B + (V −B)+, and I∗ = 1 + δ + J∗
(
A + (U −A)+ − 1

)
.

Proof. Fix some I, J > 0, and suppose (n0, k0) is a point that satisfies the two conditions of

the theorem. Since we assumed that all of the as, bs, us, vs in Definition 1.1 are integers, we
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have that for all (n, k) in some R2 neighborhood of (n0, k0), all of the ratios F (n−j, k−i)/

F (n, k) are well-defined rational functions of n and k. (See (1.1) for F (n, k).) Hence we

can form a linear combination

(1.4)
I∑

i=0

J∑

j=0

αi,j(n)
F (n− j, k − i)

F (n, k)

of these rational functions, in which the α’s are to be determined, if possible, so as to make

the sum vanish identically in the neighborhood.

As in [WZ3], the problem is to find a common denominator for the summand in (1.4).

Instead we find a common denominator D(n, k) for

I∑

i=0

J∑

j=0

F (n− j, k − i)
F (n, k)

.

Clearly, D(n, k) is also a common denominator for the summand in (1.4).

Consider

(1.5)
F (n− j, k)

F (n, k)
=

P (n− j, k)
P (n, k)

p∏
s=1

(asn + bsk + cs − asj)!
(asn + bsk + cs)!

q∏
s=1

(usn + vsk + ws)!
(usn + vsk + ws − usj)!

which contributes to the denominator D(n, k), if as > 0, or us < 0, or both.

In (1.5), if as > 0 for some s ∈ [p], then

(asn + bsk + cs − asj)!
(asn + bsk + cs)!

=
1

(asn + bsk + cs)
asj

.

Since (asn + bsk + cs)
asj

divides (asn + bsk + cs)
asJ

for 0 < j ≤ J and as > 0, a common

denominator for
∑J

j=0
F (n−j,k)

F (n,k) is

(1.6) P (n, k)
p∏

s=1
as>0

(asn + bsk + cs)
asJ

q∏
s=1

us<0

(usn + vsk + ws + 1)−usJ .
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Similarly, a common denominator for
∑I

i=0
F (n,k−i)
F (n,k) is

(1.7) P (n, k)
p∏

s=1
bs>0

(asn + bsk + cs)
bsI

q∏
s=1
vs<0

(usn + vsk + ws + 1)−vsI .

Putting (1.6) and (1.7) together, we have

D(n, k) = P (n, k)
p∏

s=1

(asn+bsk+cs)
maxi,j(asj+bsi)+

q∏
s=1

(usn+vsk+ws+1)maxi,j(−usj−vsi)+ .

Clearly,

max
i∈[I]0
j∈[J]0

(asj + bsi)+ = (as)+J + (bs)+I,

and

max
i∈[I]0
j∈[J]0

(−usj − vsi)+ = (−us)+J + (−vs)+I.

If we let δ := degk P (n, k), then the degree in k of D(n, k) is

δ + J
( ∑

s∈[p]
bs 6=0

(as)+
)
+I

( ∑

s∈[p]

(bs)+
)
+J

( ∑

s∈[q]
vs 6=0

(−us)+
)
+I

( ∑

s∈[q]

(−vs)+
)

= δ + J
( ∑

s∈[p]
bs 6=0

(as)+ +
∑

s∈[q]
vs 6=0

(−us)+
)
+I

( ∑

s∈[p]

(bs)+ +
∑

s∈[q]

(−vs)+
)
.

Next, we find the degree in k of the numerator polynomial N(n, k) in (1.4) with D(n, k)

as the common denominator. Consider the (i, j)th term in

(1.8)
I∑

i=0

J∑

j=0

F (n− j, k − i)
F (n, k)

.

Since

F (n− j, k − i)
F (n, k)

=
P (n− j, k − i)

P (n, k)
ξ−i

×

p∏
s=1

asj+bsi<0

(asn + bsk + cs + 1)−asj−bsi
q∏

s=1
usj+vsi>0

(usn + vsk + ws)
usj+vsi

p∏
s=1

asj+bsi>0

(asn + bsk + cs)
asj+bsi

q∏
s=1

usj+vsi<0

(usn + vsk + ws + 1)−usj−vsi

,
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by letting

Ni,j :=
p∏

s=1
asj+bsi<0

(asn + bsk + cs + 1)−asj−bsi
q∏

s=1
usj+vsi>0

(usn + vsk + ws)
usj+vsi

,

and

Di,j :=
p∏

s=1
asj+bsi>0

(asn + bsk + cs)
asj+bsi

q∏
s=1

usj+vsi<0

(usn + vsk + ws + 1)−usj−vsi,

we have

F (n− j, k − i)
F (n, k)

=
P (n− j, k − i)

P (n, k)
ξ−i Ni,jD(n, k)

Di,jD(n, k)
.

Hence, the degree in k of the numerator of the (i,j)th term in (1.8) with D(n, k) as the

denominator, i.e., P (n− j, k − i)ξ−iNi,jD(n, k)/
(
Di,jP (n, k)

)
, is

(1.9) δ +
∑

bs 6=0
asj+bsi<0

(−asj − bsi) +
∑

vs 6=0
usj+vsi>0

(usj + vsi)

+ degk D(n, k)−
∑

bs 6=0
asj+bsi>0

(asj + bsi)−
∑

vs 6=0
usj+vsi<0

(−usj − vsi)− δ

= degk D(n, k) +
∑

vs 6=0

(usj + vsi)−
∑

bs 6=0

(asj + bsi).

Taking the maximum over i,j of the last line of (1.9) gives

degk N(n, k) = max
i,j

(
degk D(n, k) +

∑

vs 6=0

(usj + vsi)−
∑

bs 6=0

(asj + bsi)
)

= degk D(n, k) + max
i,j

(
j

∑
s

vs 6=0

us + i
∑

s

vs − j
∑

s
bs 6=0

as − i
∑

s

bs

)
.

Let

U :=
∑

s
vs 6=0

us, V :=
∑

s

vs, A :=
∑

s
bs 6=0

as, B :=
∑

s

bs.
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We can rewrite degk N(n, k) as

degk N(n, k) = degk D(n, k) + max
i,j

(
j(U −A) + i(V −B)

)

= degk D(n, k) + J(U −A)+ + I(V −B)+.

Knowing the degree in k of N(n, k), we deduce that there are 1+degk N(n, k) homogeneous

linear equations to solve in (I + 1)(J + 1) unknowns, namely, the αi,j ’s. A system of

solutions for the αi,j ’s exists, if (I +1)(J +1) ≥ 2+degk N(n, k). From the inequality, we

will obtain an upper bound for J .

Let

A :=
∑

s
bs 6=0

(as)+ +
∑

s
vs 6=0

(−us)+, and B :=
∑

s

(bs)+ +
∑

s

(−vs)+.

Then,

degk N(n, k) = degk D(n, k) + max
i,j

(
j(U −A) + i(V −B)

)

= δ + JA + IB + J(U −A)+ + I(V −B)+.

If B + (V − B)+ 6= 0, we let J∗ = B + (V − B)+, and solve for I∗ in (I + 1)(J + 1) ≥

2+degk N(n, k) to get I∗ = 1+ δ+
(
A+(U −A)+−1

)(
B+(V −B)+

)
as an upper bound.

If B + (V −B)+ = 0, namely

∑
s

b+
s +

∑
s

(−vs)+ + (
∑

s

vs −
∑

s

bs)+ = 0,

then bs = 0 for all s ∈ [p], and vs = 0 for all s ∈ [q]. In other words, the factorial part of

F (n, k) is independent of k. In this case,

∑

k

F (n, k) =

∏
s∈[p](asn + cs)!∏
s∈[q](usn + ws)!

∑

k

P (n, k)ξk

=

∏
s∈[p](asn + cs)!∏
s∈[q](usn + ws)!

P (n, ξD)
1

1− ξ
.
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The sum above is summable but infinite. Since we are concerned with only terminating

hypergeometric series, we can disregard the case B + (V −B)+ = 0. ¤

Remark. If P (n, k) in F (n, k) is a constant, then δ = 0. In this case, the I∗ and J∗ from

Theorem 1.4 agree with the results in [W2] when B + (V −B)+ 6= 0.

1.2 Examples

Example 1.5. Take F (n, k) =
(
n
k

)2. We express F (n, k) in the form of Definition 1.1

to get n!2/(k!2(n − k)!2). Then a1 = a2 = 1, b1 = b2 = 0, u1 = u2 = 0, u3 = u4 = 1,

v1 = v2 = 1, v3 = v4 = −1, U = 2, V = 0, A = 0, B = 0, A = 0, B = 2. Since U − A = 2

and V −B = 0, we get J∗ = 2 and I∗ = 3.

The following two examples are from [W2, p. 4].

Example 1.6. [W2] Fix a positive integer m, and put

F (n, k) =
(

n

k

)m

=
n!m

k!m(n− k)!m
.

Then ai = 1, i ∈ [m]; bi = 0, i ∈ [m]; ui = 0, i ∈ [m]; ui = 1, i ∈ [2m] \ [m]; vi = 1,

i ∈ [m]; vi = −1, i ∈ [2m] \ [m]. Thus A = 0, B = 0, U = m, V = 0, A = 0, B = m.

Hence J∗ = m, and I∗ = (m− 1)m + 1.

Example 1.7. [W2] If F (n, k) = (n+k+α+β)!/(k! (n−k)! (k+α)!), then the fn’s where

fn(x) =
∑

k F (n, k)xk are the Jacobi polynomials. (See Formula (Jacobi) in Introduction

for Jacobi polynomials.) A similar calculation as in the previous examples shows that

J∗ = 2 and I∗ = 1. This is the best possible.


