CHAPTER I

THE ORDER OF THE RECURRENCE FOR $F(n, k)$

We show slightly better upper bounds for the order of the recurrence satisfied by a given proper-hypergeometric term $F(n, k)$. We follow the proof of Theorem 3.1 in [WZ3] and hold fast unto the estimates to obtain our bounds.

Definition 1.1. [WZ3] A proper-hypergeometric term is a function of the form

$$
\begin{equation*}
F(n, k)=P(n, k) \frac{\prod_{s=1}^{p}\left(a_{s} n+b_{s} k+c_{s}\right)!}{\prod_{s=1}^{q}\left(u_{s} n+v_{s} k+w_{s}\right)!} \xi^{k} \tag{1.1}
\end{equation*}
$$

where P is a polynomial and ξ is a parameter. The a 's, b 's, u 's and v 's are assumed to be specific integers, i.e., they are integers and do not depend on any other parameters. The c 's and the w's are also integers, but they may depend on parameters. We will say that F is well-defined at (n, k) if none of the numbers $\left\{a_{s} n+b_{s} k+c_{s}\right\}_{1}^{p}$ is a negative integer. We will say that $F(n, k)=0$ if F is well-defined at (n, k) and at least one of the numbers $\left\{u_{s} n+v_{s} k+w_{s}\right\}_{1}^{q}$ is a negative integer, or $P(n, k)=0$.

Definition 1.2. [WZ3] A proper-hypergeometric term F is said to satisfy a k-free recurrence at a point $\left(n_{0}, k_{0}\right) \in \mathbb{Z}^{2}$ if there are integers I, J and polynomials $\alpha_{i, j}=\alpha_{i, j}(n)$ that do not depend on k and are not all zero, such that the relation

$$
\begin{equation*}
\sum_{i=0}^{I} \sum_{j=0}^{J} \alpha_{i, j}(n) F(n-j, k-i)=0 \tag{1.2}
\end{equation*}
$$

holds for all (n, k) in some \mathbb{R}^{2} neighborhood of $\left(n_{0}, k_{0}\right)$, in the sense that F is well-defined at all of the arguments that occur, and the relation (1.2) is true.

Theorem 1.3. [WZ3, Theorem 3.1] Every proper-hypergeometric term F satisfies a nontrivial k-free recurrence relation. Indeed there exist I,J and polynomials $\alpha_{i, j}(n)(i=$ $0, \ldots, I ; j=0, \ldots, J)$ not all zero, such that (1.2) holds at every point $\left(n_{0}, k_{0}\right) \in \mathbb{Z}^{2}$ for which $F\left(n_{0}, k_{0}\right) \neq 0$ and all of the values $F\left(n_{0}-j, k_{0}-i\right)$ that occur in (1.2) are welldefined. Furthermore there exists such a recurrence with $(I, J)=\left(I^{*}, J^{*}\right)$, where

$$
\begin{equation*}
J^{*}=\sum_{s}\left|b_{s}\right|+\sum_{s}\left|v_{s}\right|, \quad I^{*}=1+\operatorname{deg}(P)+J^{*}\left(\left(\sum_{s}\left|a_{s}\right|+\sum_{s}\left|u_{s}\right|\right)-1\right) . \tag{1.3}
\end{equation*}
$$

1.1 SLightly Better upper bounds

Notation. We let $x^{+}:=\max \{0, x\}$. The set $\{1,2, \ldots, I\}$ is denoted by $[I]$, and $[I]_{0}$ means $[I] \cup\{0\}$. We let $x^{\underline{m}}$ denote $x(x-1) \cdots(x-m+1)$, and $x^{\bar{m}}$ denote $x(x+1) \cdots(x+m-1)$ for positive integers m. We define $x^{0}=1=x^{\overline{0}}$.

We improve the bounds for I^{*} and J^{*} by

Theorem 1.4. Let

$$
\begin{aligned}
& U=\sum_{\substack{s \\
v_{s} \neq 0}} u_{s}, \quad V:=\sum_{s} v_{s}, \quad A:=\sum_{\substack{s \\
b_{s} \neq 0}} a_{s}, \quad B:=\sum_{s} b_{s}, \\
& \mathcal{A}:=\sum_{\substack{s \\
b_{s} \neq 0}}\left(a_{s}\right)^{+}+\sum_{\substack{s \\
v_{s} \neq 0}}\left(-u_{s}\right)^{+}, \quad \mathcal{B}:=\sum_{s}\left(b_{s}\right)^{+}+\sum_{s}\left(-v_{s}\right)^{+},
\end{aligned}
$$

and $\delta=\operatorname{deg}_{k} P(n, k)$. Then J^{*} and I^{*} in (1.3) of Theorem 1.3 can be replaced by

$$
J^{*}=\mathcal{B}+(V-B)^{+}, \quad \text { and } \quad I^{*}=1+\delta+J^{*}\left(\mathcal{A}+(U-A)^{+}-1\right) .
$$

Proof. Fix some $I, J>0$, and suppose $\left(n_{0}, k_{0}\right)$ is a point that satisfies the two conditions of the theorem. Since we assumed that all of the $a_{s}, b_{s}, u_{s}, v_{s}$ in Definition 1.1 are integers, we
have that for all (n, k) in some \mathbb{R}^{2} neighborhood of $\left(n_{0}, k_{0}\right)$, all of the ratios $F(n-j, k-i) /$ $F(n, k)$ are well-defined rational functions of n and k. (See (1.1) for $F(n, k)$.) Hence we can form a linear combination

$$
\begin{equation*}
\sum_{i=0}^{I} \sum_{j=0}^{J} \alpha_{i, j}(n) \frac{F(n-j, k-i)}{F(n, k)} \tag{1.4}
\end{equation*}
$$

of these rational functions, in which the α 's are to be determined, if possible, so as to make the sum vanish identically in the neighborhood.

As in [WZ3], the problem is to find a common denominator for the summand in (1.4). Instead we find a common denominator $D(n, k)$ for

$$
\sum_{i=0}^{I} \sum_{j=0}^{J} \frac{F(n-j, k-i)}{F(n, k)}
$$

Clearly, $D(n, k)$ is also a common denominator for the summand in (1.4).
Consider

$$
\begin{equation*}
\frac{F(n-j, k)}{F(n, k)}=\frac{P(n-j, k)}{P(n, k)} \prod_{s=1}^{p} \frac{\left(a_{s} n+b_{s} k+c_{s}-a_{s} j\right)!}{\left(a_{s} n+b_{s} k+c_{s}\right)!} \prod_{s=1}^{q} \frac{\left(u_{s} n+v_{s} k+w_{s}\right)!}{\left(u_{s} n+v_{s} k+w_{s}-u_{s} j\right)!} \tag{1.5}
\end{equation*}
$$

which contributes to the denominator $D(n, k)$, if $a_{s}>0$, or $u_{s}<0$, or both.
In (1.5), if $a_{s}>0$ for some $s \in[p]$, then

$$
\frac{\left(a_{s} n+b_{s} k+c_{s}-a_{s} j\right)!}{\left(a_{s} n+b_{s} k+c_{s}\right)!}=\frac{1}{\left(a_{s} n+b_{s} k+c_{s}\right)^{a_{s} j}} .
$$

Since $\left(a_{s} n+b_{s} k+c_{s}\right)^{\underline{a_{s} j}}$ divides $\left(a_{s} n+b_{s} k+c_{s}\right) \underline{a_{s} J}$ for $0<j \leq J$ and $a_{s}>0$, a common denominator for $\sum_{j=0}^{J} \frac{F(n-j, k)}{F(n, k)}$ is

$$
\begin{equation*}
P(n, k) \prod_{\substack{s=1 \\ a_{s}>0}}^{p}\left(a_{s} n+b_{s} k+c_{s} \frac{a_{s} J}{} \prod_{\substack{s=1 \\ u_{s}<0}}^{q}\left(u_{s} n+v_{s} k+w_{s}+1\right)^{\overline{-u_{s} J}} .\right. \tag{1.6}
\end{equation*}
$$

Similarly, a common denominator for $\sum_{i=0}^{I} \frac{F(n, k-i)}{F(n, k)}$ is

$$
\begin{equation*}
P(n, k) \prod_{\substack{s=1 \\ b_{s}>0}}^{p}\left(a_{s} n+b_{s} k+c_{s}\right)^{b_{s} I} \prod_{\substack{s=1 \\ v_{s}<0}}^{q}\left(u_{s} n+v_{s} k+w_{s}+1\right)^{\overline{-v_{s} I}} . \tag{1.7}
\end{equation*}
$$

Putting (1.6) and (1.7) together, we have

$$
D(n, k)=P(n, k) \prod_{s=1}^{p}\left(a_{s} n+b_{s} k+c_{s}\right) \frac{\max _{i, j}\left(a_{s} j+b_{s} i\right)^{+}}{\prod_{s=1}^{q}\left(u_{s} n+v_{s} k+w_{s}+1\right)^{\overline{\max _{i, j}\left(-u_{s} j-v_{s} i\right)^{+}}} ~}
$$

Clearly,

$$
\max _{\substack{i \in[I]_{0} \\ j \in[J]_{0}}}\left(a_{s} j+b_{s} i\right)^{+}=\left(a_{s}\right)^{+} J+\left(b_{s}\right)^{+} I,
$$

and

$$
\max _{\substack{i \in[I]_{0} \\ j \in[J]_{0}}}\left(-u_{s} j-v_{s} i\right)^{+}=\left(-u_{s}\right)^{+} J+\left(-v_{s}\right)^{+} I
$$

If we let $\delta:=\operatorname{deg}_{k} P(n, k)$, then the degree in k of $D(n, k)$ is

$$
\begin{aligned}
\delta & +J\left(\sum_{\substack{s \in[p] \\
b_{s} \neq 0}}\left(a_{s}\right)^{+}\right)+I\left(\sum_{s \in[p]}\left(b_{s}\right)^{+}\right)+J\left(\sum_{\substack{s \in[q] \\
v_{s} \neq 0}}\left(-u_{s}\right)^{+}\right)+I\left(\sum_{s \in[q]}\left(-v_{s}\right)^{+}\right) \\
& =\delta+J\left(\sum_{\substack{s \in[p] \\
b_{s} \neq 0}}\left(a_{s}\right)^{+}+\sum_{\substack{s \in[q] \\
v_{s} \neq 0}}\left(-u_{s}\right)^{+}\right)+I\left(\sum_{s \in[p]}\left(b_{s}\right)^{+}+\sum_{s \in[q]}\left(-v_{s}\right)^{+}\right) .
\end{aligned}
$$

Next, we find the degree in k of the numerator polynomial $N(n, k)$ in (1.4) with $D(n, k)$ as the common denominator. Consider the (i, j) th term in

$$
\begin{equation*}
\sum_{i=0}^{I} \sum_{j=0}^{J} \frac{F(n-j, k-i)}{F(n, k)} \tag{1.8}
\end{equation*}
$$

Since

$$
\begin{aligned}
\frac{F(n-j, k-i)}{F(n, k)} & =\frac{P(n-j, k-i)}{P(n, k)} \xi^{-i} \\
& \times \frac{\prod_{\substack{s=1 \\
a_{s} j+b_{s} i<0}}^{p}\left(a_{s} n+b_{s} k+c_{s}+1\right)^{\overline{-a_{s} j-b_{s} i}} \prod_{\substack{s=1 \\
u_{s} j+v_{s} i>0}}^{q}\left(u_{s} n+v_{s} k+w_{s}\right)^{u_{s} j+v_{s} i}}{\prod_{\substack{s=1 \\
a_{s} j+b_{s} i>0}}^{p}\left(a_{s} n+b_{s} k+c_{s}\right)^{a_{s} j+b_{s} i}} \prod_{\substack{s=1 \\
u_{s} j+v_{s} i<0}}^{q}\left(u_{s} n+v_{s} k+w_{s}+1\right)^{\overline{-u_{s} j-v_{s} i}}
\end{aligned}
$$

by letting

$$
N_{i, j}:=\prod_{\substack{s=1 \\ a_{s} j+b_{s} i<0}}^{p}\left(a_{s} n+b_{s} k+c_{s}+1\right)^{\overline{-a_{s} j-b_{s} i}} \prod_{\substack{s=1 \\ u_{s} j+v_{s} i>0}}^{q}\left(u_{s} n+v_{s} k+w_{s}\right)^{\frac{u_{s} j+v_{s} i}{}}
$$

and
we have

$$
\frac{F(n-j, k-i)}{F(n, k)}=\frac{P(n-j, k-i)}{P(n, k)} \xi^{-i} \frac{N_{i, j} D(n, k)}{D_{i, j} D(n, k)} .
$$

Hence, the degree in k of the numerator of the (i, j) th term in (1.8) with $D(n, k)$ as the denominator, i.e., $P(n-j, k-i) \xi^{-i} N_{i, j} D(n, k) /\left(D_{i, j} P(n, k)\right)$, is

$$
\begin{align*}
& \delta+ \sum_{\substack{b_{s} \neq 0 \\
a_{s} j+b_{s} i<0}}\left(-a_{s} j-b_{s} i\right)+\sum_{\substack{v_{s} \neq 0 \\
u_{s} j+v_{s} i>0}}\left(u_{s} j+v_{s} i\right) \tag{1.9}\\
&+\operatorname{deg}_{k} D(n, k)-\sum_{\substack{b_{s} \neq 0 \\
a_{s} j+b_{s} i>0}}\left(a_{s} j+b_{s} i\right)-\sum_{\substack{v_{s} \neq 0 \\
u_{s} j+v_{s} i<0}}\left(-u_{s} j-v_{s} i\right)-\delta \\
&=\operatorname{deg}_{k} D(n, k)+\sum_{v_{s} \neq 0}\left(u_{s} j+v_{s} i\right)-\sum_{b_{s} \neq 0}\left(a_{s} j+b_{s} i\right) .
\end{align*}
$$

Taking the maximum over i, j of the last line of (1.9) gives

$$
\begin{aligned}
\operatorname{deg}_{k} N(n, k) & =\max _{i, j}\left(\operatorname{deg}_{k} D(n, k)+\sum_{v_{s} \neq 0}\left(u_{s} j+v_{s} i\right)-\sum_{b_{s} \neq 0}\left(a_{s} j+b_{s} i\right)\right) \\
& =\operatorname{deg}_{k} D(n, k)+\max _{i, j}\left(j \sum_{\substack{s \\
v_{s} \neq 0}} u_{s}+i \sum_{s} v_{s}-j \sum_{\substack{s \\
b_{s} \neq 0}} a_{s}-i \sum_{s} b_{s}\right) .
\end{aligned}
$$

Let

$$
U:=\sum_{\substack{s \\ v_{s} \neq 0}} u_{s}, \quad V:=\sum_{s} v_{s}, \quad A:=\sum_{\substack{s \\ b_{s} \neq 0}} a_{s}, \quad B:=\sum_{s} b_{s} .
$$

We can rewrite $\operatorname{deg}_{k} N(n, k)$ as

$$
\begin{aligned}
\operatorname{deg}_{k} N(n, k) & =\operatorname{deg}_{k} D(n, k)+\max _{i, j}(j(U-A)+i(V-B)) \\
& =\operatorname{deg}_{k} D(n, k)+J(U-A)^{+}+I(V-B)^{+} .
\end{aligned}
$$

Knowing the degree in k of $N(n, k)$, we deduce that there are $1+\operatorname{deg}_{k} N(n, k)$ homogeneous linear equations to solve in $(I+1)(J+1)$ unknowns, namely, the $\alpha_{i, j}$'s. A system of solutions for the $\alpha_{i, j}$'s exists, if $(I+1)(J+1) \geq 2+\operatorname{deg}_{k} N(n, k)$. From the inequality, we will obtain an upper bound for J.

Let

$$
\mathcal{A}:=\sum_{\substack{s \\ b_{s} \neq 0}}\left(a_{s}\right)^{+}+\sum_{\substack{s \\ v_{s} \neq 0}}\left(-u_{s}\right)^{+}, \quad \text { and } \quad \mathcal{B}:=\sum_{s}\left(b_{s}\right)^{+}+\sum_{s}\left(-v_{s}\right)^{+} \text {. }
$$

Then,

$$
\begin{aligned}
\operatorname{deg}_{k} N(n, k) & =\operatorname{deg}_{k} D(n, k)+\max _{i, j}(j(U-A)+i(V-B)) \\
& =\delta+J \mathcal{A}+I \mathcal{B}+J(U-A)^{+}+I(V-B)^{+} .
\end{aligned}
$$

If $\mathcal{B}+(V-B)^{+} \neq 0$, we let $J^{*}=\mathcal{B}+(V-B)^{+}$, and solve for I^{*} in $(I+1)(J+1) \geq$ $2+\operatorname{deg}_{k} N(n, k)$ to get $I^{*}=1+\delta+\left(\mathcal{A}+(U-A)^{+}-1\right)\left(\mathcal{B}+(V-B)^{+}\right)$as an upper bound.

If $\mathcal{B}+(V-B)^{+}=0$, namely

$$
\sum_{s} b_{s}^{+}+\sum_{s}\left(-v_{s}\right)^{+}+\left(\sum_{s} v_{s}-\sum_{s} b_{s}\right)^{+}=0,
$$

then $b_{s}=0$ for all $s \in[p]$, and $v_{s}=0$ for all $s \in[q]$. In other words, the factorial part of $F(n, k)$ is independent of k. In this case,

$$
\begin{aligned}
\sum_{k} F(n, k) & =\frac{\prod_{s \in[p]}\left(a_{s} n+c_{s}\right)!}{\prod_{s \in[q]}\left(u_{s} n+w_{s}\right)!} \sum_{k} P(n, k) \xi^{k} \\
& =\frac{\prod_{s \in[p]}\left(a_{s} n+c_{s}\right)!}{\prod_{s \in[q]}\left(u_{s} n+w_{s}\right)!} P(n, \xi D) \frac{1}{1-\xi} .
\end{aligned}
$$

The sum above is summable but infinite. Since we are concerned with only terminating hypergeometric series, we can disregard the case $\mathcal{B}+(V-B)^{+}=0$.

Remark. If $P(n, k)$ in $F(n, k)$ is a constant, then $\delta=0$. In this case, the I^{*} and J^{*} from Theorem 1.4 agree with the results in $[\mathrm{W} 2]$ when $\mathcal{B}+(V-B)^{+} \neq 0$.

1.2 Examples

Example 1.5. Take $F(n, k)=\binom{n}{k}^{2}$. We express $F(n, k)$ in the form of Definition 1.1 to get $n!^{2} /\left(k!^{2}(n-k)!^{2}\right)$. Then $a_{1}=a_{2}=1, b_{1}=b_{2}=0, u_{1}=u_{2}=0, u_{3}=u_{4}=1$, $v_{1}=v_{2}=1, v_{3}=v_{4}=-1, U=2, V=0, A=0, B=0, \mathcal{A}=0, \mathcal{B}=2$. Since $U-A=2$ and $V-B=0$, we get $J^{*}=2$ and $I^{*}=3$.

The following two examples are from [W2, p. 4].

Example 1.6. [W2] Fix a positive integer m, and put

$$
F(n, k)=\binom{n}{k}^{m}=\frac{n!^{m}}{k!^{m}(n-k)!^{m}}
$$

Then $a_{i}=1, i \in[m] ; b_{i}=0, i \in[m] ; u_{i}=0, i \in[m] ; u_{i}=1, i \in[2 m] \backslash[m] ; v_{i}=1$, $i \in[m] ; v_{i}=-1, i \in[2 m] \backslash[m]$. Thus $A=0, B=0, U=m, V=0, \mathcal{A}=0, \mathcal{B}=m$. Hence $J^{*}=m$, and $I^{*}=(m-1) m+1$.

Example 1.7. [W2] If $F(n, k)=(n+k+\alpha+\beta)!/(k!(n-k)!(k+\alpha)!)$, then the f_{n} 's where $f_{n}(x)=\sum_{k} F(n, k) x^{k}$ are the Jacobi polynomials. (See Formula (Jacobi) in Introduction for Jacobi polynomials.) A similar calculation as in the previous examples shows that $J^{*}=2$ and $I^{*}=1$. This is the best possible.

