Exercises on manipulating means and standard deviations

Lily Yen

Due January 12th, 2015

1. Show that for any data set $\{x_i\}_{i=1}^n$,

a.
$$\sum_{i=1}^{n} (x_i - \bar{x}) = 0.$$

b. $s^2 = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} x_i \right)^2 \right).$

2. Prove that if a data set $\{x_i\}_{i=1}^n$ has mean \bar{x} and standard deviation s_x , then

- a. if $y_i = x_i + h$, then $\bar{y} = \bar{x} + h$ and $s_y = s_x$;
- b. if $y_i = cx_i$, then $\bar{y} = c\bar{x}$ and $s_y = cs_x$;
- c. if $z_i = \frac{x_i \bar{x}}{s_x}$, then $\bar{z} = 0$ and $s_z = 1$.

3. A sample of 20 resistors yielded a mean value of 44.6Ω and a standard deviation of 1.3Ω .

- a. If one more resistor of 52Ω is added to the sample, what are the mean and standard deviation of the 21 resistors?
- b. If the original sample of 20 resistors is combined with a sample of 10 resistors that had a mean of 48.3Ω and standard deviation of 1.9Ω , calculate the mean and standard deviation of the combined sample of 30 resistors.