Exercises on manipulating means and standard deviations

Lily Yen

Due January 12th, 2015

1. Show that for any data set $\left\{x_{i}\right\}_{i=1}^{n}$,
a. $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=0$.
b. $s^{2}=\frac{1}{n-1}\left(\sum_{i=1}^{n} x_{i}^{2}-\frac{1}{n}\left(\sum_{i=1}^{n} x_{i}\right)^{2}\right)$.
2. Prove that if a data set $\left\{x_{i}\right\}_{i=1}^{n}$ has mean \bar{x} and standard deviation s_{x}, then
a. if $y_{i}=x_{i}+h$, then $\bar{y}=\bar{x}+h$ and $s_{y}=s_{x}$;
b. if $y_{i}=c x_{i}$, then $\bar{y}=c \bar{x}$ and $s_{y}=c s_{x}$;
c. if $z_{i}=\frac{x_{i}-\bar{x}}{s_{x}}$, then $\bar{z}=0$ and $s_{z}=1$.
3. A sample of 20 resistors yielded a mean value of 44.6Ω and a standard deviation of 1.3Ω.
a. If one more resistor of 52Ω is added to the sample, what are the mean and standard deviation of the 21 resistors?
b. If the original sample of 20 resistors is combined with a sample of 10 resistors that had a mean of 48.3Ω and standard deviation of 1.9Ω, calculate the mean and standard deviation of the combined sample of 30 resistors.
