Name:

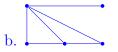
Math 336 Spring 2024 Dr. Lily Yen

Midterm Show all your work Number: ______ Signature:

Score: /30

Problem 1: A simple graph (no loops, no multiple edges, no directed edges) on n vertices has a corresponding adjacency matrix of dimension $n \times n$.

- a. What are the entries on the diagonal?
- b. How many bits are required to store the adjacency matrix?


c. Prove that
$$\frac{n^2 - n}{2} = \Theta(n^2)$$
.

- a. The entries on the diagonal are all 0 (since there are no loops).
- b. The matrix is symmetric, so only the entries above the diagonal need to be stored. Each entry is a single bit (0 or 1), so the matrix requires $(n-1) + (n-2) + \dots + 1 = \frac{1}{2}(n-1)n = \frac{n^2-n}{2}$ bits.
- c. Clearly $\frac{n^2-n}{2} < \frac{n^2}{2} = \frac{1}{2}n^2$. Moreover, if n > 2, then $n^2 2n > 0$, so $2n^2 2n > n^2$, so by dividing both sides of the inequality by 4, we get $\frac{n^2-n}{2} > \frac{1}{4}n^2$. Therefore, if n > 2,

$$\frac{1}{4}n^2 < \frac{n^2 - n}{2} < \frac{1}{2}n^2,$$

so $\frac{n^2-n}{2} = \Theta(n^2)$. Score: /5 **Problem 2**: For each given degree sequence of a simple graph, either draw the graph or explain why such a graph does not exist.

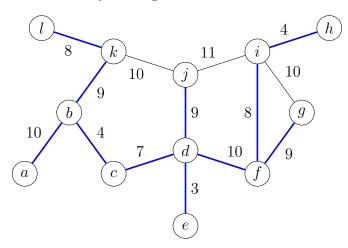
- a. 0, 1, 2, 3, 4
- b. 1, 2, 2, 3, 4
- c. A connected simple graph of degree sequence 1, 1, 1, 1, 2, 2.
- a. The graph has 5 vertices, so the vertex of degree 4 must be connected to every other vertex. Since one vertex has degree 0, this graph is not possible.

c. A connected graph with 6 vertices must have at least 5 edges (from a tree), so degree sum at least $2 \times 5 = 10$, but 1 + 1 + 1 + 1 + 2 + 2 = 8 < 10, so the graph is impossible.

Score: /5

Problem 3: Does the following graph contain an Eulerian cycle? If so, list the vertices of traversal. If not, explain why not.

Score: /3


Problem 4: Given the second row of an extended Prüfer code, determine the first and draw the corresponding labelled tree.

 $3 \ 5 \ 2 \ 4$ $2 \ 5 \ 2 \ 4 \ 0$

1

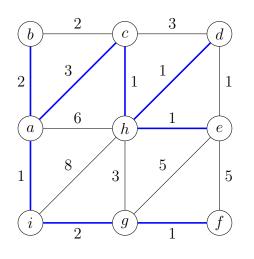
Score: /5

Problem 5: Use one of the minimum spanning tree algorithms to find a minimum spanning tree of the following graph. List clearly the order of choice with its corresponding cost and summarize by stating the minimum cost.

**		
K 1110	2291	•
TTI UC	nai	•

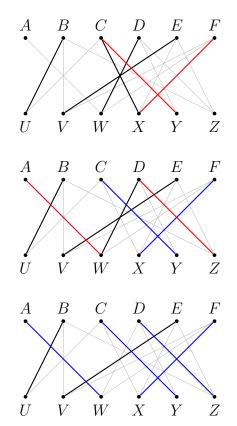
Edge

 Cost


Alternatively, Prim's algorithm begins with vertex a. Then add

- 1	<u></u>	Then add	d:
$e\!-\!d$ $b\!-\!c$	$\frac{3}{4}$	Vertex	Cost
$h\!\!-\!\!i$	4	b	10
$c\!-\!d$	7	c	4
f–i	8	d	7
k–l	8	e	3
b-k	9	k	ç
d-j	9	l	8
f-g	9	j	Q
d-f	10	\tilde{f}	10
<i>a–b</i>	10	i	8
Total	81	h	4
		g	9
		Total	81

Score: /5


Problem 6: Use Dijkstra's algorithm to find a shortest paths tree from vertex a on the following graph. Track your iterations in a table with vertices for column headings.

Iteration	a	b	с	d	e	f	g	h	i
0	0	2	3					6	1
1	0	2	3				3	6	1
2	0	2	3				3	6	1
3	0	2	3	6			3	4	1
4	0	2	3	6	8	4	3	4	1
5	0	2	3	5	5	4	3	4	1
6	0	2	3	5	5	4	3	4	1
7	0	2	3	5	5	4	3	4	1

Score: /5

Problem 7: Demonstrate the *augmenting path* algorithm for finding a perfect matching in the following bipartite graph by carrying out two iterations.

Score:

/2