Name:

Math 336
Spring 2024
Dr. Lily Yen

Midterm
Show all your work

Number:
Signature:
Score:
/30

Problem 1: A simple graph (no loops, no multiple edges, no directed edges) on n vertices has a corresponding adjacency matrix of dimension $n \times n$.
a. What are the entries on the diagonal?
b. How many bits are required to store the adjacency matrix?
c. Prove that $\frac{n^{2}-n}{2}=\Theta\left(n^{2}\right)$.
a. The entries on the diagonal are all 0 (since there are no loops).
b. The matrix is symmetric, so only the entries above the diagonal need to be stored.

Each entry is a single bit (0 or 1), so the matrix requires
$(n-1)+(n-2)+\cdots+1=\frac{1}{2}(n-1) n=\frac{n^{2}-n}{2}$ bits.
c. Clearly $\frac{n^{2}-n}{2}<\frac{n^{2}}{2}=\frac{1}{2} n^{2}$. Moreover, if $n>2$, then $n^{2}-2 n>0$, so $2 n^{2}-2 n>n^{2}$, so by dividing both sides of the inequality by 4 , we get $\frac{n^{2}-n}{2}>\frac{1}{4} n^{2}$. Therefore, if $n>2$,

$$
\frac{1}{4} n^{2}<\frac{n^{2}-n}{2}<\frac{1}{2} n^{2}
$$

so $\frac{n^{2}-n}{2}=\Theta\left(n^{2}\right)$.
Score: /5
Problem 2: For each given degree sequence of a simple graph, either draw the graph or explain why such a graph does not exist.
a. $0,1,2,3,4$
b. $1,2,2,3,4$
c. A connected simple graph of degree sequence $1,1,1,1,2,2$.
a. The graph has 5 vertices, so the vertex of degree 4 must be connected to every other vertex. Since one vertex has degree 0 , this graph is not possible.
b.

c. A connected graph with 6 vertices must have at least 5 edges (from a tree), so degree sum at least $2 \times 5=10$, but $1+1+1+1+2+2=8<10$, so the graph is impossible.

Score: $\quad / 5$
Problem 3: Does the following graph contain an Eulerian cycle? If so, list the vertices of traversal. If not, explain why not.

Since all the degrees are even, the graph does contain a Eulerian cycle. One such is shown.

Problem 4: Given the second row of an extended Prüfer code, determine the first and draw the corresponding labelled tree.

\[

\]

Score: /5
Problem 5: Use one of the minimum spanning tree algorithms to find a minimum spanning tree of the following graph. List clearly the order of choice with its corresponding cost and summarize by stating the minimum cost.

Kruskal:

Edge	Cost	Alternatively, Then add:		Prim's algorithm begins with vertex a.
$e-d$	3			
$b-c$	4	Vertex	Cost	
$h-i$	4	b	10	
$c-d$	7	c	4	
$f-i$	8	d	7	
$k-l$	8	e	3	
$b-k$	9	k	9	
$d-j$	9	l	8	
$f-g$	9	j	9	
$d-f$	10	f	10	
$a-b$	10	i	8	
Total	81	h	4	
		g	9	
		Total	81	

Score: /5

Problem 6: Use Dijkstra's algorithm to find a shortest paths tree from vertex a on the following graph. Track your iterations in a table with vertices for column headings.

Iteration	a	b	c	d	e	f	g	h	i
0	0	2	3					6	1
1	0	2	3				3	6	1
2	0	2	3				3	6	1
3	0	2	3	6			3	4	1
4	0	2	3	6	8	4	3	4	1
5	0	2	3	5	5	4	3	4	1
6	0	2	3	5	5	4	3	4	1
7	0	2	3	5	5	4	3	4	1

Score: /5
Problem 7: Demonstrate the augmenting path algorithm for finding a perfect matching in the following bipartite graph by carrying out two iterations.

Score: /2
\square

