Name:
Math 336
Spring 2024
Dr. Lily Yen
Midterm
Show all your work \qquad
Problem 1: A simple graph (no loops, no multiple edges, no directed edges) on n vertices has a corresponding adjacency matrix of dimension $n \times n$.
a. What are the entries on the diagonal?
b. How many bits are required to store the adjacency matrix?
c. Prove that $\frac{n^{2}-n}{2}=\Theta\left(n^{2}\right)$.

Score: /5
Problem 2: For each given degree sequence of a simple graph, either draw the graph or explain why such a graph does not exist.
a. $0,1,2,3,4$
b. $1,2,2,3,4$
c. A connected simple graph of degree sequence $1,1,1,1,2,2$.

Score: $/ 5$
Problem 3: Does the following graph contain an Eulerian cycle? If so, list the vertices of traversal. If not, explain why not.

Score: /3

Problem 4: Given the second row of an extended Prüfer code, determine the first and draw the corresponding labelled tree.

$$
2,5,2,4,0
$$

Score: /5

Problem 5: Use one of the minimum spanning tree algorithms to find a minimum spanning tree of the following graph. List clearly the order of choice with its corresponding cost and summarize by stating the minimum cost.

Score: /5

Problem 6: Use Dijkstra's algorithm to find a shortest paths tree from vertex a on the following graph. Track your iterations in a table with vertices for column headings.

Score: /5
Problem 7: Demonstrate the augmenting path algorithm for finding a perfect matching in the following bipartite graph by carrying out two iterations.

Score: $\quad / 2$

