Name:

Math 336
Spring 2024
Dr. Lily Yen

Quiz 5
Show all your work

Number:
Signature:
Score: \qquad

Problem 1: Use the matrix representation to rewrite both the following problem and its dual. (One mark each)

$$
\begin{array}{rlrl}
\text { Maximize } & Z & =2 x_{1}+7 x_{2}+4 x_{3} \\
\text { subject to } \quad x_{1}+2 x_{2}+x_{3} & \leq 10, \\
& 3 x_{1}+3 x_{2}+2 x_{3} & \leq 12, \\
\text { and } & x_{1}, \quad x_{2}, \quad x_{3} & \geq 0 .
\end{array}
$$

Determine which model is easier to solve graphically and do so. (Four marks)
Use the simplex method in tabular form (provided on page 2) to solve the other model and check that optimal solutions yield the same value in both primal and dual problems. (Four marks)

Primal: Maximize

$$
Z=\left[\begin{array}{lll}
2, & 7, & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

subject to

$$
\left[\begin{array}{lll}
1 & 2 & 1 \\
3 & 3 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \leq\left[\begin{array}{l}
10 \\
12
\end{array}\right], \quad\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \geq\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \quad\left[\begin{array}{ll}
y_{1}, & y_{2}
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 1 \\
3 & 3 & 2
\end{array}\right] \geq\left[\begin{array}{l}
2 \\
7 \\
4
\end{array}\right], \quad\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right] \geq\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Dual: Minimize

$$
W=\left[\begin{array}{ll}
y_{1}, & y_{2}
\end{array}\right]\left[\begin{array}{l}
10 \\
12
\end{array}\right]
$$

subject to

The dual problem is easier to solve graphically since it is two dimensional while the primal problem is three dimensional.
The (dual) objective equation is $W=10 y_{1}+12 y_{2}$, so $y_{2}=-\frac{5}{6} y_{1}+\frac{W}{12}$. The constraints are $y_{1}+3 y_{2} \geq 2,2 y_{1}+3 y_{2} \geq 7$, and $y_{1}+2 y_{2} \geq 4$, so $y_{2} \geq-\frac{1}{3} y_{1}+\frac{2}{3}, y_{2} \geq-\frac{2}{3} y_{1}+\frac{7}{3}$, and $y_{2} \geq-\frac{1}{2} y_{1}+2$. Thus the feasible region is

It.	B.V.	Eq	Z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	RHS	Ratio
	Z	(0)	1	-2	-7	-4	0	0	0	
	x_{4}	I	0	1	2	1	1	0	10	5
	x_{5}	II	0	3	3	2	0	1	12	4
(0) +7 II	Z	(0)	1	5	0	$\frac{2}{3}$	0	$\frac{7}{3}$	28	
I-2II	x_{4}	I	0	-1	0	$-\frac{1}{3}$	1	$-\frac{2}{3}$	2	
	x_{2}	II	0	1	1	$\frac{2}{3}$	0	$\frac{1}{3}$	4	
2										
3										

