		Name:		
Math 336	Quiz 3	Number:		
Dr. Lilv Yen	Show all your work	Signature:		
0		Score:	/10	

Problem 1: Use the graphical method to find all optimal solutions for the following model:

Maximize $Z = 500x_1 + 300x_2$ $x_2 = -\frac{5}{3}x_1 + \frac{1}{300}Z$ subject to $15x_1 + 5x_2 \le 300$, $x_2 \le -3x_1 + 60$ $10x_1 + 6x_2 \le 240$, $x_2 \le -\frac{5}{3}x_1 + 40$ $8x_1 + 12x_2 \le 450$, $x_2 \le -\frac{2}{3}x_1 + \frac{75}{2}$ and x_1 , $x_2 \ge 0$.

 x_2

To find P, solve $-\frac{2}{3}x_1 + \frac{75}{2} = -\frac{5}{3}x_1 + 40$, which yields $x_1 = \frac{5}{2}$. To find Q, solve $-3x_1 + 60 = -\frac{5}{3}x_1 + 40$, which yields $x_1 = 15$. Since $Z = 500x_1 + 300x_2$ and $10x_1 + 6x_2 \le 240$ have the same slope $(-\frac{5}{3})$, all the infinitely many points on the line between $P = (\frac{5}{2}, \frac{215}{6})$ and Q = (15, 15) are optimal.

Score: /3**Problem 2**: Consider the following problem, where the value of c_1 has not yet been ascertained.

> Maximize $Z = c_1 x_1 + x_2$ $x_2 = -c_1 x_1 + Z$ subject to $x_1 + x_2 \le 6$, $x_2 \le -x_1 + 6$ $x_1 + 2x_2 \le 10$, $x_2 \le -\frac{1}{2}x_1 + 5$ and $x_1, \quad x_2 \ge 0$.

Use graphical analysis to determine the optimal solution(s) for (x_1, x_2) for the various possible values of $c_1 \in \mathbb{R}$.

To find P, solve $-x_1+6 = -\frac{1}{2}x_1+5$, which yields $x_1 = 2$. The slope of $x_2 = -c_1x_1 + Z$ is $-c_1$, so you have five cases:

If $c_1 < \frac{1}{2}$, then the optimal solution is $(x_1, x_2) = (0, 5)$. If $c_1 = \frac{1}{2}$, then any point on the line between (0, 5) and P = (2, 4) is optimal. If $\frac{1}{2} < c_1 < 1$, then the optimal solution is $(x_1, x_2) = P = (2, 4)$. If $c_1 = 1$, then any point on the line between P = (2, 4) and (6, 0) is optimal. If $c_1 > 1$, then the optimal solution is $(x_1, x_2) = P = (6, 0)$.

Score: /3

Problem 3: Capilano University Heavy Metal Company plans to blend a new alloy of 40% tin, 35% zinc, and 25% lead from several available alloys having the following compositions. The company wants to determine the proportions of these alloys that should be blended to produce the new alloy at a minimum cost. Formulate a linear programming model for this problem.

	Alloy				
	1	2	3	4	5
Percentage of tin	60	25	45	20	50
Percentage of zinc	10	15	45	50	40
Percentage of lead	30	60	10	30	10
Cost $(\$/kg)$	47	44	55	51	57

Let x_i (in kg) be the amount if alloy i is used. Then minimize (in dollars)

 $Z = 47x_1 + 44x_2 + 55x_3 + 51x_4 + 57x_5$

subject to

$$0.6x_1 + 0.25x_2 + 0.45x_3 + 0.2x_4 + 0.5x_5 = 0.4(x_1 + x_2 + x_3 + x_4 + x_5)$$

$$0.1x_1 + 0.15x_2 + 0.45x_3 + 0.5x_4 + 0.4x_5 = 0.35(x_1 + x_2 + x_3 + x_4 + x_5)$$

$$0.3x_1 + 0.6x_2 + 0.1x_3 + 0.3x_4 + 0.1x_5 = 0.25(x_1 + x_2 + x_3 + x_4 + x_5)$$

and $x_1, x_2, x_3, x_4, x_5 \ge 0$.