Name:

Math 336
Spring 2024
Dr. Lily Yen

Quiz 3
Show all your work

Number:
Signature:
Score:
_ $/ 10$

Problem 1: Use the graphical method to find all optimal solutions $\overline{\text { for }}$ the following model:

$$
\begin{array}{rlrl}
& \text { Maximize } & Z & =500 x_{1}+300 x_{2} \quad x_{2}=-\frac{5}{3} x_{1}+\frac{1}{300} Z \\
\text { subject to } & 15 x_{1}+5 x_{2} & \leq 300, \quad x_{2} \leq-3 x_{1}+60 \\
& 10 x_{1}+6 x_{2} & \leq 240, \quad x_{2} \leq-\frac{5}{3} x_{1}+40 \\
& 8 x_{1}+12 x_{2} & \leq 450, \quad x_{2} \leq-\frac{2}{3} x_{1}+\frac{75}{2} \\
\text { and } & x_{1}, \quad x_{2} & \geq 0 .
\end{array}
$$

To find P, solve $-\frac{2}{3} x_{1}+\frac{75}{2}=-\frac{5}{3} x_{1}+40$, which yields $x_{1}=\frac{5}{2}$. To find Q, solve $-3 x_{1}+60=-\frac{5}{3} x_{1}+40$, which yields $x_{1}=15$.
Since $Z=500 x_{1}+300 x_{2}$ and $10 x_{1}+6 x_{2} \leq 240$ have the same slope $\left(-\frac{5}{3}\right)$, all the infinitely many points on the line between $P=\left(\frac{5}{2}, \frac{215}{6}\right)$ and $Q=(15,15)$ are optimal.

Score: /3
Problem 2: Consider the following problem, where the value of c_{1} has not yet been ascertained.

$$
\begin{array}{ll}
\text { Maximize } & \quad Z=c_{1} x_{1}+x_{2} \quad x_{2}=-c_{1} x_{1}+Z \\
\text { subject to } & x_{1}+x_{2} \leq 6, \quad x_{2} \leq-x_{1}+6 \\
& x_{1}+2 x_{2} \leq 10, \quad x_{2} \leq-\frac{1}{2} x_{1}+5 \\
\text { and } & x_{1}, \quad x_{2} \geq 0 .
\end{array}
$$

Use graphical analysis to determine the optimal solution(s) for (x_{1}, x_{2}) for the various possible values of $c_{1} \in \mathbb{R}$.

To find P, solve $-x_{1}+6=-\frac{1}{2} x_{1}+5$, which yields $x_{1}=2$.
The slope of $\quad x_{2}=-c_{1} x_{1}+Z$ is $-c_{1}$, so you have five cases:
If $c_{1}<\frac{1}{2}$, then the optimal solution is $\left(x_{1}, x_{2}\right)=(0,5)$.
If $c_{1}=\frac{1}{2}$, then any point on the line between $(0,5)$ and $P=(2,4)$ is optimal.
If $\frac{1}{2}<c_{1}<1$, then the optimal solution is $\left(x_{1}, x_{2}\right)=P=(2,4)$.
If $c_{1}=1$, then any point on the line between $P=(2,4)$ and $(6,0)$ is optimal.
If $c_{1}>1$, then the optimal solution is $\left(x_{1}, x_{2}\right)=P=(6,0)$.
Score: /3

Problem 3: Capilano University Heavy Metal Company plans to blend a new alloy of 40% tin, 35% zinc, and 25% lead from several available alloys having the following compositions. The company wants to determine the proportions of these alloys that should be blended to produce the new alloy at a minimum cost. Formulate a linear programming model for this problem.

	Alloy				
	1	2	3	4	5
Percentage of tin	60	25	45	20	50
Percentage of zinc	10	15	45	50	40
Percentage of lead	30	60	10	30	10
Cost $(\$ / \mathrm{kg})$	47	44	55	51	57

Let $x_{i}($ in kg$)$ be the amount if alloy i is used.
Then minimize (in dollars)

$$
Z=47 x_{1}+44 x_{2}+55 x_{3}+51 x_{4}+57 x_{5}
$$

subject to

$$
\begin{aligned}
0.6 x_{1}+0.25 x_{2}+0.45 x_{3}+0.2 x_{4}+0.5 x_{5} & =0.4\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}\right) \\
0.1 x_{1}+0.15 x_{2}+0.45 x_{3}+0.5 x_{4}+0.4 x_{5} & =0.35\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}\right) \\
0.3 x_{1}+0.6 x_{2}+0.1 x_{3}+0.3 x_{4}+0.1 x_{5} & =0.25\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}\right)
\end{aligned}
$$

and $x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \geq 0$.

