		Name:		
Math 336	Quiz 3	Number:		
Spring 2024 Dr. Lilv Yen	Show all your work	Signature:		
		Score:	/10	

Problem 1: Use the graphical method to find all optimal solutions for the following model:

Maximize $Z = 500x_1 + 300x_2$ subject to $15x_1 + 5x_2 \le 300$, $10x_1 + 6x_2 \le 240$, $8x_1 + 12x_2 \le 450$, and $x_1, \quad x_2 \ge 0$.

Score: /3

Problem 2: Consider the following problem, where the value of c_1 has not yet been ascertained.

Maximize $Z = c_1 x_1 + x_2$
subject to $x_1 + x_2 \le 6,$
 $x_1 + 2x_2 \le 10,$
and $x_1, \quad x_2 \ge 0.$

Use graphical analysis to determine the optimal solution(s) for (x_1, x_2) for the various possible values of $c_1 \in \mathbb{R}$.

/6

Problem 3: Capilano University Heavy Metal Company plans to blend a new alloy of 40% tin, 35% zinc, and 25% lead from several available alloys having the following compositions. The company wants to determine the proportions of these alloys that should be blended to produce the new alloy at a minimum cost. Formulate a linear programming model for this problem.

	Alloy				
	1	2	3	4	5
Percentage of tin	60	25	45	20	50
Percentage of zinc	10	15	45	50	40
Percentage of lead	30	60	10	30	10
Cost $(\$/kg)$	47	44	55	51	57