Name:

Math 336	$Q u i z 3$
Spring 2024	
Dr. Lily Yen	Show all your work

Number:
Signature:
Score:
_/10
Problem 1: Use the graphical method to find all optimal solutions for the following model:

$$
\begin{aligned}
\text { Maximize } & Z & =500 x_{1}+300 x_{2} \\
\text { subject to } & 15 x_{1}+5 x_{2} & \leq 300, \\
& 10 x_{1}+6 x_{2} & \leq 240, \\
& 8 x_{1}+12 x_{2} & \leq 450, \\
\text { and } & x_{1}, \quad x_{2} & \geq 0 .
\end{aligned}
$$

Score: /3
Problem 2: Consider the following problem, where the value of c_{1} has not yet been ascertained.

Maximize	$\quad Z=c_{1} x_{1}+x_{2}$
subject to	$x_{1}+x_{2} \leq 6$,
	$x_{1}+2 x_{2} \leq 10$,
and	$x_{1}, \quad x_{2} \geq 0$.

Use graphical analysis to determine the optimal solution(s) for (x_{1}, x_{2}) for the various possible values of $c_{1} \in \mathbb{R}$.

Problem 3: Capilano University Heavy Metal Company plans to blend a new alloy of 40% tin, 35% zinc, and 25% lead from several available alloys having the following compositions. The company wants to determine the proportions of these alloys that should be blended to produce the new alloy at a minimum cost. Formulate a linear programming model for this problem.

	Alloy				
	1	2	3	4	5
Percentage of tin	60	25	45	20	50
Percentage of zinc	10	15	45	50	40
Percentage of lead	30	60	10	30	10
Cost $(\$ / \mathrm{kg})$	47	44	55	51	57

