		Name:		
Math 336 Spring 2024	Quiz 1	Number:		
Dr. Lily Yen	Show all your work	Signature:		
U U		Score:	/10	

Problem 1: True or false. Prove your claim.

- a. $\cos(x) = \Omega(1)$.
- b. $\sum_{j \le n} 2 \sim 3n$.
- a. True: Choose $\epsilon = \frac{1}{2}$ and $x_j = 2j\pi$. Then, for all j, $|\cos(x_j)| = |\cos(2j\pi)| = 1$ and $\epsilon \cdot 1 = \frac{1}{2}$, so $|\cos(x_j)| > \epsilon \cdot 1$. Therefore $\cos(x) = \Omega(1)$.
- b. False: Note that $\sum_{j \le n} 2 = \sum_{j=1}^{n} 2 = 2n$. Therefore

$$\lim_{n \to \infty} \frac{\sum_{j \le n} 2}{3n} = \lim_{n \to \infty} \frac{2n}{3n} = \lim_{n \to \infty} \frac{2}{3} = \frac{2}{3} \neq 1,$$

so $\sum_{j \le n} 2 \not \sim 3n$

Score: /4

Problem 2: Show that $\sum_{j=1}^{n} j = \Theta(n^2)$.

Note that $\sum_{j=1}^{n} j = \frac{1}{2}n(n+1)$. If n > 1, then $\frac{1}{2}n(n+1) > \frac{1}{2}n(n) = \frac{1}{2}n^2$ and $\frac{1}{2}n(n+1) < \frac{1}{2}n(n+n) = \frac{1}{2}n(2n) = n^2$. Therefore

$$\frac{1}{2}n^2 < \sum_{j=1}^n j < n^2,$$

so
$$\sum_{j=1}^{n} j = \Theta(n^2)$$
 (with $(c_1 = \frac{1}{2} \text{ and } c_2 = 1)$).

Score: /5

Problem 3: Is it true that if 4 students gather for a Graph Optimization party at Lily's office, there is always a student who knows an even number of other students?

No: If all the students know each other, then every student knows three other students (and 3 is not even).

	0	—0	9	Q
Or another example:	0	—0	or \checkmark	—0