P(pjAB) = P(AIB)- Per)
_PCBIAY) tap)

THEOREM (BAYES’ THEOREM) Let Ay, As, ..., Ap be a collection
of k mutually exclusive and exhaustive events with prior probabilities

—

PAD) (€=, oK) The For oo @%;v @fﬂ’
A idnich P(B) >0, +he posterier pret 44
. FNB Y. ;
8"\'&"'8 o P(A'IB>~_?(PU(\>‘-‘ P(%IAJ> F(/U)
J P(2) >= pesla) A
) \JL‘—I
, Lo B Tetnd Pt
EXAMPLE Engineering Capilano rents cars from 3 rental agencies:
60% from Budget, 30% from Hertz, 10% from Eurocar. If 9% of Budget

cars need a tune-up, 20% from Hertz, 6% from Eurocar, what is the
probability that a car which has just been delivered will need a tune-up?

0.9 T
P o8 N PLT) =
Yoo /0/3 H o7 <

2
Qo 0.8 — N
o-°
0. C <L
° 9
Cavy 4 Tune
If a new rental car needs a tune-up, what is the probability that the
car came from Hertz? “
PCHAT) ?(TIH) - P(H) 0.2%03 |
PCH | T) = - - - —
PCT)




EXAMPLE Casino Vegas has 10 roulette wheels, indistinguishable to
the customer, but one wheel (the good wheel) is out of adjustment and
gives a better chance of winni @ than the remaining 9 wheels

(5% chance).

1. If a wheel is picked at random what is the probability of winning?

& o <A—p.1%0.2

o e ot s TP,
9

° OW @=‘ff=;

Whed. °‘75 - = °L+004)’o 06$

2. Having won, what is the probability that you are playing on the

P; good wheel? ’P(G— \\/\)) = ?( G /)W)
P

= - - Iy (3
0.06
I Xo.D0F
J, 3. Having won the first timnc, what is the probability of winning if

you play again on the same wheel?
,w.u\ e (G‘l ~ ) / w
o P R

o5 Sirg

- + 0,6*(3' ‘
0.065 0N S

> 0.2x002 005X

‘%FCNIW) oS W — 0,00</+0-"°Vr_
6065 o ewmes ek

4. If you keep winning, and you stay on the same wheel, what value
do your updated probabilities of Winning the next time approach?

wt 7 P =

on samd il

Pcw)caz



FXAMPLE Supposc buildings collapse due to one of several errors, (1,
9y« vy Uy For example

C1 Poor design (underestimate load; underestimate wind stress; ... )

Cy Poor construction (low grade materials; insufficient controls; gross
error; ...)

C3 A combination of C; and Cy
Cy Other (non-assignable) causes.

From either past studies (actual percentages of buildings that have the
above problems) or the subjective beliefs of expert consultants, one
may determine P(C}), the prior probabilities.

Also, suppose that previous experience (or, again, perhaps experts’
opinion) determine what the probabilities of collapse would be given
each of the above cases; that is, the values of P(B | C;) are known,
where B is “building collapse.” These conditional probabilities are
sometimes called risk factors. ‘

Table 2.3 on the next page summarizes these known probabilities.
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Cause Prior probability Risk [aclor Posterior probability

C; P(C)

Cy 0.00050
Cy 0.00010
g 0.00001
Cy 0.99939

P(B | Cy) P(C; | B)
0.10
0.20
0.40
0.0001

assignable cause?

Table 2.3: Causes of building collapse

. Calculate the posterior probabilities.

. What is the chance of finding an assignable cause for the collapse?

3. What is the most likely assignable cause for the collapsc?

. How likely is it that the collapse was caused by more than one

48



Practice exercises in Section 2.4: 45, 49, 53, 59, 61, 63, 67.

49



Rl PCANB) =ppl®) . P(B)

| ~PlBIA) - PCA)
2.5 Independence

Let us first consider an example from drawing a card from a standard
52-card deck.

EXAMPLE Draw one card from a standard 52-card deck.

[1 P(K) = —,’—3-
P(#)
(@1 4

P(

(e comditime
e@i_é;// pupest .
Note that P(K N ) = SBZ_ =5 - ql.- 2y kA

12
However, what if we compare P(# | Black) and P(Black | #)?

POCD| Blak) = - 34+L P(eD) -
_ spads
7C Bhk| ) F

J
# ix 3—} >
/ . . ”
Two independent events illustrated with a Venn dlagram
net M

L O | o £ g

P
PLAYES p ot independdnd

PeAalB)=©
DEFINITION Two events A and B are independent if ﬂf}[@) P(ﬁ')
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A, B indipeadd
PAIR) = POA) |

Modified multiplication rule for P(A N B) when the events are inde-

pendent: P(Aﬂ%): w . P(B) :P(A')P(B) |
- P( B/A ‘}D(A) -~ 19(6)'P/A/) |

Generalize tc@ mutually independent events:

A, Al e el T Muheatly excluadee

o P A DAL A AE)

= P( A ALY - TT ?(Ai>

EXAMPLEinndependent or %l'épendent?
S _ not mutually
1. Spinners Al = sl ilc'\/\m snoks zulta -
diffors s spins |
| oNns— [‘ ﬁdﬂ—?a'm’\t

2. Dice@ Row\j di o oy Hme S
P60 6Ty g Al s indepeadsdi

3. Decks of cards, or drawers with different coloured socks

dvan. - cords %&“%W )
e dB  anwy /

% OLLW




4. Pots with different numbers: results from repeated draws with

replacement are V\dQFQ« ALt
vs. without replacement. W '

EXAMPLE If the events M: ”being a male” and F: ”failing the course”
are independent, and you know that in a class of 84, 72 passed, and 49
are female. Fill in a two-by-two table classified by male, female, pass,

and fail.
® J /\:Z/LL ED (P(\M\f\JF\ P(MY -P(F)
A6S L < A
Fa | 5 | T el CJ =355 o
8(@«@7 46\ %‘-f lo PR

Pass ‘ .
PR NPz X” /r;r'é ves,, W 5

&ni L ven
EXAMPLE A fair coin is tossed 3 times. List all 8 possible equally

likely outcomes. ] K - LsE ma
H pd \_r H/ (\T PIRAL S .
/N /N /\ /\
H S B H T H T “ T

If we define the following events,

-+
1. A: a head on each of the first 2 tosses A ° { B H T 3

2. B: a tail on the 3rd toss ={HHT 5 HHﬁ}
R ~
B3 __T\} 52 PCAYS 2
=S HTY, L
{vH\ T T3¢?(B)’L
T w1
T © 7T




3. C: exactly 2 tails in the 3 tosses, C E 3\“ T y TH ]") T Hj

3
Dectermine Whether events are pairwise mdependent ?(C} 3 ’5-
Dalr wis¢

L.

N - PCAY - P(B) - dxi=1
(P(A lg) g SB\OWA-)B_ é
'P(A’(\C) = 0O ‘ no‘(’ ‘ P(A’) P<C):2;.L>‘-§-:—;%_;_
|AA1P@AMA; ,

2 (8) - P(e)=1, 2.3
pcenc) = F =5 # 7 5t
[ pot  independe s B C.

o

{

Reliability of systems g liubili 2 o ?( Sys [ b ”‘//(5)

Electrical components or communication networks arranged

1. in series, the system works only i.f sl Co m]?orlﬂ-.«jb I:D ) @ ) @ .
w oK.
NG e

the system fails if at (an-f’ ma ‘9\4‘5 @ D
2. in parallel, the system works if X least me Vlj E]

'Tf' wowk S
the system fails only if ol CW\FO ng~ 3 ‘F‘A%

Need to find P(system works) and P(system faﬂs) assummg indepen-

/7
dent components. /Q»U"%?l\ % A
53




Avie . AnG
DT A Ll gl fr- 2k 2t B

EXAMPLE Let A be the event that componen’r‘a fails; ] , and C

11kevwglg_ﬁu_e@1 compouents b and ¢ respectively. Suppose P(A) =
0.05 P(B) = 0.02,§(C') — 0.03, estimate the reliahility of the system

a, b, Tcommerted T series. w not W mo((loeno(ﬂaaz
We know that the system fails if :7—*[:7 C ;
So, P(systemfails) =

?(AUBUC—) < PA) + B P(C)

coos #owr * 002 0]

*

So, P(systemworks) =

4= PCsysten fails)

> | —o0-1 :O-Ci

—

Similarly, estimate the probability that the system works if components
a, b, and c are connected in parallel.

il S
3 (systen werks) G

o( AuB v DeMegas e
j;% (hngnc) ) (Ange) = A UB VC
T ol paene ) 21— min (PO B, PO

- |— 0. 02 = 0. 7&
When we know that the components are independent, we can compute

exact reliability calculations.
Let us compute exactly the reliability of the systems above:

D b QUUINCLD )
P Systoa woks)z PC A AR N

=9ca) s - Pet)
= (I——o.oS> (- °-°1> - /,0.03)

Mo .95 %0.9€ x0.77F
=~ 0 -90307F




;} in ?WM
? C s‘ﬁ’“"w woks) = |- PO AnBA ¢)
} =1 — PA): p(B) - P )

:\_ D.0S xo¢.0L % d.93
- 0.9997+ .

EXAMPLE Let us consider a combined construction and compute its
reliability, ie, P(systemworks).

f (Ccc
o | a
/

b —_
& — %(D): f~0.o§gaL P(@>

— @ =4.99¢; = Lo.03
AL ' " -
0. 96903 < ?(@ n@) -~ 0999 *0.9 % =6.93
: = . 0
0 467/3 ,\'\@
@ =

Practice exercises in Section 2.5: 71, 73, 77, 79, 83, 85, 87.

Hand oo §2.¢ %25 &1
B r e ey




e e
M/We(

VW AMAB

69 (
(8

B Paatlt
?ﬁ#ﬁ#~@m4/)
- | =
PCAC
] ANGO
Pl "
A) P8)-PCL)

(1

@ 3
(D )
P urtes
) ® -
-PCe
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- P wAe)

- 1=
PLAN8)

> \ -
PA) - P8)

L -
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Chapter 3:  Discrete Random Variables and Proba-
bility Distributions

3.1 Random Variables

DEFINITION For a given sample space S of some experiment, a ran-
dom variable (rv) is any rule that associates a number with each
outcome in S. In mathematical language, a random variable is a func-
tion whose domain is Z{y, 0 and whose range is

JL&Q_MJ_R)

EXAMPLE When you register for a course, you will either get into
the course, or be on the waitlist, or be rejected. With S = {I, W, R},
define a random variable X by

X(I)=1, X(W)=05, X(R)=0.

DEFINITION Any random variable whose only possible values are ()

and 1 is called a Bernoulli random variable. K%( )(>:

EXAMPLE Starting at a fixed time, each car entering an intersection
is observed to see whether it turns left (L), right (R), or goes straight
~ahead (A). The experiment terminates as soon as a car is observed to
turn left. Let X be the number of cars observed. What are the possible
X values? List five outcomes and their associated X values.

_F;g@z.(wiii,l)-“ j:N

Possitly ouitcomie o domac 4 L / Rt
W (RRARL ) -5 AL

DEFINITION A discrete random variable is

o .V wWhose POSS{&(L

valuas g T, ol el cmsist 0 4 7,1"’.‘"‘6
L hy (23 i 0,25, :L% ) o Can be [listed vN
7N f/x@' AL seclmﬂnir)z&, CHCOMA{@ Y \\{\ﬁm“a 507%««,&/)

L}



A continuous random variable requires both of the following to apply:

1. Interval condition: @ ({ e Nt o o v N
AcA nfenal w U g paSJOWT

EXAMPLE 1. Select 2 lights from a box of 7 working and 3 defective
lights. Decfine the rv, W to be the number of working lights. ?""‘/

W(Ly, Ly) = WC;D) D=0 W o

Ry, w
et S RS S G

'/P(O)> = A (P(Z) pul

— Dw) =
N\ \LS«NéTD(i) - W(JZA)S !
D 2. Roll 2 fair dice. Define the following rv’s: T is the total of the
Z dice; M is the maximum value of the dice; D is the absolute
2 difference of the dice. ‘3 2
. R"ﬂ‘#(l} 12,34, 123 R“'B‘(M)zgi A 6} Rege (DFJ0, 1%
o k 3. Flip a coin untﬂ a head appears. Let X be the number of flips 5}

needed before the first HEAD.

oo - oyt s YW
TH T TTTH M
X(HD




4, Randomly select a transistor from a production run. Let X be
the lifetime of the transistor. .
C mhnugte

X( Tm—/w:sb-‘&\ = (O e& rdon v

o))

Practice exercises in Section 3.1: All odds from 1 to 9.
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3.2 Probability Distributions for Discrete Random
Variables

ExaMpLE Capilano University’s Pure and Applied Science Division

has a lab with six computers reserved for students taking statistics. Let

X denote the number of these computers that are in use at a particular

time of day. Suppose that the probability distribution of X is as given
in Table 3.1.

p(-’":)

0 1 2 3 4 5 6
005 010 015 025 020 015 010 5 pw)= |

Table 3.1: Computer use

1. Find the probability that at least one computer is in use.

PO X 21)=po ~poe pLy P psd +pee)
= 1_ -P(O) = {—o0.05= 0.95

2. The administration needs to cut the budget and would like to
closc the lab il less than half of the computers is in use. Find the

probability. 61,2,
P X <3 = P> 2P0+ pa)

= 0.3

DEFINITION The probability distribution or probability mass

function (pmf) of a discrete rv is defined for every number z by
p(x) =P(X =z)=Plalls € S§: X(s) = x).
K ;

acﬂm 60
. Vv
dxsedie rv . Y ks



Y Remember that [or any pmf, we always have the conditions that,
p(r)>0 and Y p(z)= L
T

ExaMPLE Consider whether the next person buying a computer at
Futl/u%ighop buys a laptop or a desktop model. Let
pest BHu
X _\/{1, if the costumer buys a desktop,

0, if the costumer buys a laptop.

If 20% of all purchasers during that week select a desktop, the pmf for
X is

p(0)=P(X =0)=08, = |—-0.2

p(l) =P(X =1)=0.2,

plx)=P(X=2)=0, ifr#0andx#1.

Equivalently,
i 0.8, ifr =0,
p(z) =402, ifr=1,
0 otherwise.

Figure 3.1 on the next page is a picture of this pmf, called a line graph.
The variable X is, of course, a Bernoulli rv and p(z) is a Bernoulli pmf.

Line graph vs. probability histogram for the pmf.

conk” V-
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1
0.8
0.2 J
0 17

Figure 3.1: The line graph for p(x)

A parameter of a probability distribution

DEFINITION Suppose p(x) depends on a quantity that can be assigned
any one of a number of possible values, with each dillerent value
determining a different probability distribution. Such a quantity is
called a parameter of the distribution. The collection of all probability
distributions for dillerent values of the parameter is called a family of

probability distributions. ol : pa rameley”

ExaMPLE Consider web registration at Capilano University. Starting
at a fixed time, we observe whether new registrants are foreign or
domesti e see a foreign student (F). Letgy= P(F), assume
that successive registrants are independent, and deﬁne the rv X hy
x = number of registrants observed. Then

\'\M’7

ObbF p(1) = P(X —1) — P(E) —
| p(2) = P(X =2) = P(DF) = P(D)- P(F) = (1 - o0
and ?r'ot mass f4 H)(D;L) — J
p(3) = P(X = 3) = P(DDF) = (1 -’

Continuing in this way, a general formula cmerges:

o(a) = {(1 —@)" s T =1,2,3,.

3.1
0, otherwise. (3-1)

The parametery can assume any value between 0 and 1. Expression 3.1
describes the family of geometric distributions.
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The cumulative distribution function

DEFINITION The cumulative distribution function (cdf) I'(x) of
a discrete rv X with pmf p(z) is defined for every number = by

=Y X ,
FoO w e prb o™ o shbgenved \‘/‘d’“@%x

Wl bk ot mest -
EXAMPLE A consumer organization that evaluates new automobiles
customarily reports the number of major delecls in each car examined.
Let X denote the number of major defects in a randomly selected car
of a certain type. The cdf of X is as follows:

( X &kso\ﬂﬁ v,
0, x < 0, - ’
0.06, 0<uw<l, Lo, °> %O» i, e ptx)
019, 1<z<2, L4 2) 013
039, 2<z<3 0oy V7
R e e

CCJ% U = o 1+ 2 3
0.92, 4<ux <), |
0.97, 5<z <6, j}(i):o,m_o.og
1, 6 <. '

\

Calculate the following probabilities directly from the cdf:
1. p(2), that is, P(X = 2).

=F(2) - Fl(2-)
= @.3?{ — 0.19 =02
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2. P(X >3). = e | I
]D(q)-fp(.\.")—fp(é)
= F(6) = F3) = 1 — 47 =033
3. P(2 <X <5),
= F(5) - F2-)
=0.9F - 0149 = 018

4. P2 < X <5).

0. 53

H
(=
~9
S
|
(=
O
-0
)

PROPOSITION For any two numbers a and b with a < b,
Pla< X <b)=F(5) - F(a-)
where “a—" means “4lo Qa;z/;”' oss e X \/M
erMc(‘(j ;@ ss Fhan A

X < &
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i—@x). |

EXAMPLE 1. Verify that f : f(z) = o for x = 1,2,...,5
car@ serve as a pmf for a discrete rv. ) {
—

_ _ &
F1) = f—y few)= 2
) [ .
7(( Z): —7%-5__ 57( y): g;—; 'L —
sy Y= ke

2. Revisit picking 2 working lights problem out of 7 working and 3
defective ones. Find its pmf. Do | ne SW}}
<

——

(f

x| o 1L L & ;
1. T a M
)| 5 15 I8 L | P
B S

3. Rewrite the previous pmf as a cdf and draw its corresponding

Cumadatve dwstribition 15 T ()

O X <O
¢ L o=x < 11
Hx)= Y i
5 1<9¢ <2
- s
<

1 Qex (3 s LIS

\\\ 123 AL S
= o2 3

Practice exercises in Section 3.2: all odds from 11 to 25.

histog 2o cd+
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3.3  Expected Values

Recall how you compute averages:

W\/X. JZ n  bnb— X, X, Xy,

if?

L i— y & !5'
V=l

1( t Xyt - -+ Xy

——

— —

e | M

ExamprLe Consider 1000 students in the science division and define
the rv, X to be the number of courses taken for a randomly selected
student. The following pmf is given.

z 1 2 3 4 5 6 7
pmd pl) | 005 010 02 05 01 0025 005 o |

lo
P9 *looo students | Ep 190 Qo0 S loe A5 25 4500

Table 3.2: Science students and courses

On average, how many courses does a randomly selected student take?

507" + oo x 2L + Joor3 + 50° AY 4jo0% §+ 25%6+2534F

looO

r [
oo zoo X3 ‘ ‘ |
To00 l°°° ‘°°° }

— ) — a/v.e/\o%( H ) s
2 j>(x) :i) |

# 4 oS
DEFINITION Let X be a discrete rv with set of possible values D and
pmf p(x). The expected value or mean value of X, denoted by
E(X) or ux or just p, is

- "

s

E(X)=px = Zfrp(cc)

zeD
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[( 7]2} ()

EXAMPLE Suppose the number of plants of a particular type found
in a rectangular sampling region (called quadrat by ecologists) in a,
certain geographic area is a rv X with pmf
‘ (_‘_ )— 4 .L - L + -

2 > +
() ¢/w3, ©=1,23... : YA f
Tr) =
P 0, otherwise. - TZ
Is E(X) finitc? "E.O() = Z PCx) - X
o C R i
=2 g * Z x> G
2 x=1

X)) o Ha Otne 9 pladty o « qu,admr_

DEFINITION If the rv X has a sct of possible values D and pml p(z),
then the expected value of any function h(x), denoted by

E(hoo] My o+ A

is computed by

h X Z h(x)p(x)

ExAMPLE Let X be the outcome when a fan dic is rolled pnce. If
before the die is rolled you are offered either 5= dollars or/5/dollars,
would you accept the guaranteed amount or would you gamble?

6

— | I S T
& . E( J)?) = 2 xl & ='L(++i‘*3* “*3+6)
>,’ s -] (eo+3o+w+—lfrl7—+(0>)

| | 4 7
ctr —— Ro0.28SFH =1  J4F _=-T
"Y- 3.5 ' o Go 6

C(m\j)m.t Wit ~
Note that in general(zrey 7 E(1/X).

E(X§ X JC_ 67

= (At2+3+¢+5%06) :%’— = 3.5

E.() o not
\mM,lh‘P)\‘CA‘h\ﬁC.




L b

dx jq-gx)-fb X _a. S{m&x + fbdx

]
Linearity of expected value, variance, o2, and rules of variance

PROPOSITION Linearity of F.
v of &, b constady

E(aX+b) - a E(X) +
(Mo~ comb

E(X> , Mx

DEFINITION Let X have pmf p(x) and expected Va]ue p. Then the
variance of X, denoted by V(X) or o2, or just 2, i

VOX)= T apd pe) = g(<x_,u> /)
The standard deviation (SD) of X is @ - \)’1—1 m

GG Y00 BOC)=(Ew) ) V(akeb) = 6 Guynlel
FxAMPLE A result called Chebyshev s inequality states that for
any probability distribution of a rv X and any number k that is at
least 1, P(|X — | > ko) < . In words, the probability that the value
of X hes at least k Standard dwmuous flum its mean is at most 1/k?.

1. What is the value of the upper bound for k =27 k=37 k = 47

E=57 k=107 4= i L T‘
(o© [
\X'/"‘\ ;LS, T'L‘,_ 4 9

A | e

6
U— VO‘ A2, Let mave possible values —1, 0, and 1, with probabilities -11—8, %,
and <&, respectively. What is P(|X — p| > 30), and how does it

compare to the corresponding upper bound?

>< — | N = ij’(ﬂ) _("'1) (3+O _q-+i

O
| 5 L ’
FolE & B 0= seom- \r(po“i,g

Zé -l,o ';l
Two computational short cuts from two propogitions in Section 3.3.

P ([ X-e S5
pCIxl 2V ) =gt 5 T@E9
frxz 4 7l

| = \ A

S B X
>5 5> 68 = k»-i:{ 9 - 3
> |




X # 4 (huscaduo sokd - om & g 4

EXAMPLE Bess, a bakery manager, knows that the number of cheese-
cakes she can sell on a given day (demand for cheesecakes) is a random
variable X with a pmf p(z) = %, x=0,1,...,5. Suppose there is a
profit of $2.5 for each cheesecake sold, but a loss of $1.00 for each
cheesecake remaining unsold. Find the expected nef pmﬁt for a day on

which she bakes 4 cheese cakes. ’K
Let N(z) be the net profit as a function of z. Find N x)

I—z © ) 2 2 o 5 _ (x) = ng X=0,1,2,3,
o T2 £ % £ & Ime N") 4 @)
1 o g

N | -4 -5 3

Make a table of values for z, p(z), N(x), and N(z)p(x) before you

ompute BEVEO 2ne0) = 3 Noo- por)
T N® g

"

= E (-4-0.5+344.5+10 + 10)

- s
- - X 41k

Expected X oot 5 ﬁL}.)ff-




Practice exercises in Section 3.3: odds from 29 to 41.
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o ok = b S
3.4 The Binomial Probability Distribution

The set-up: When experiments conform either exactly or approximately
to the following list of requirements:

——

1. in advance of the experiment. The experiment consists of
a sequence of n smaller experiments called trials.

4 |D oSihoms

2. Fach trial can result in one of the same two possible outcomes:
D ¢ Suets
F . Fou(u/w

3. The trials are independent,

4. The probability of success P(S) is constant from trial to trial;
denote it by p. P(F) = p = %

DEFINITION An experiment for which all four conditions are satisfied
is called a binomial experiment

EXAMPLE 1. coin tossing, thumb tag tossing, knife throwing, ...
& owtwts, x50 praald, (ndepinctad

?(H) =< - D up = comstest
/ » 4
2. boy or girl? Observe 50 pregnancies.

3. domestic or foreign worker? ged a (&KM H 48 ek s 4o
n ‘ AL °L1
4. Sample 100 CapU students and record whether the student has

type AB blood. "
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249 S, (0 F

S

‘ ~

n=
5. For % days in February this year, record whether or not it rains
that day in North Vancouver. R N

not (V\W‘

EXAMPLE Let us consider two examples of the same nature but dif-
| ferent population, small vs. large

o Small wiliege 50 Rowehads |, 4 have s
10 donA |
choum r e g, Hal ~ hac hsld he, Mhauac

i83®B 8 - H

?(15"%%&5) E )
PC 2" S) - ?(z"és“" )—r?(

( % h S) = 40 LWZf i) _4_'_ _ &
p Lo ho= - 5 -
Summarize: ‘\’\W“AM 'J’"U

S W Consider sampling without replacement from a dichotomous population
‘f of size N.

%)&/ Howowe, ?Q . 5«»\1\(“ (FH—F) W

Dt e mc@{*"M ""‘MJ

ls‘*




- Condifiomal 6)076 koo 000 howehatds
400 , 0@ J/WJ-¢ |
S : et WL |




DErINITION  The binomial random variable X associated with a
binomial experiment consisting of n trials is defined as

X = # S5 amop n Doads
S : swceceess
We use b(x; n,p) to denote pmf of a binomial rv X on two parameters

.ﬁand.]i ?( S>: i;

ExAMPLE Flipping a coin 50 times is a binomial experiment. However,
not all rv’s defined are binomial v’s. Determine which of the following
is a binomial rv.

1. Let X be the number of flips until (before) the first HEAD

appears. Coin Toss —
List possible values: U-/Nhl H, TH) TTH | T i (, 2, 5. . 5%
. 0 2
2. Let Y be the number of iAILs observedaw~ SO '(’vffln—QS)_ i /Ty ’2'1’715
List possible values: io) L, 2, ..., 503
3. Let Z be the length of the longest run of HEAD:s. HHWH---H
List possible values: i 0/ |, 2y - 5-'03
THTHTH

4. Let W be the difference‘ in the number of H’s and T’s.
List possible values: { o, 2} g4 ..., 46, 503

N o e i namiinl Vv
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(s+F ) Sff)( ‘§+{]:) =( S‘I’F)z

N : .
Let us study the outcomes and probabilities for a binomial experiment °

with trﬁlige trials: 3 Fosf h ( S+ F)n ;
outtoma L prob 'PLS) =J
| | 2
SsS 3 3) 1P

4P

Ss F ?(SSF)#’L‘( |

SF S e (77’,> yl'% 4 (S-(—F)b

FssS

: ( ) 6« F))
SF ¥ pstlpa” Y ,,
2§ e @y .

V2 S+F

FES '®) (5) y 3 O\ 0 K\ )
o) | > S+
= PTPHEOREM O[\/' v \4/3\/ hj\( )

.o ,, a4 “ ( Sﬂi)
r,n,p %(-X F ("Pj‘ x(’?msc;‘.Q/ él
F( S) = w )
Notatlon in TI requ1res binompdf(n, p, x) entered in that order.

Let X ~ Bin(n,p) denote that the random variable, X is a binomial | (
random variable with parameters n and p where n means numbev ¢ frials

and p means PCS) o . b ajj

S — —
s —
—

PROPOSITION (MEAN, VARIANCE, AND STANDARD DEVIATION) |
If X ~ Bin(n,p), then |

E(X)=np o VOO TPE SRR

You need to prove this on your own using the binomial expansion

formula. gu Z{.‘ﬂ/\ hv OLc‘('\‘n‘l].
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EXAMPLE Application: Acceptance Testing

Before shipping a large batch of components, a manufacturer tests the
batch to determine if it4 is acceptable. Because of the expense and/or
nature of the tests, only a small number of components in each batch
are tested to sce if they are defective or not.

Suppose a batch is deemed acceptable if its proportion of defective
components does not exceed 0.10 (p < 0.10).

The manufacturer decides to use the following test procedure:

e Randomly sample 10 (sample size) components and test them.

e Accept the batch if the number of defective items is 2 or less;
otherwise, reject the batch. (Decision Rule)

Twoa types of errors can be made:

1. Reject the batch, even if the true proportion of defectives does
not exceed 0.10.

What is the cost of this type of error?
- loss o’() AL U
— more 4:%41\»;

— reaguner st e

2. Accept a bad batch; that is, skip a batch which has a true
proportion of defectives in excess of 0.10. (Say 0.20).

What is the cost of this type of error?

- wamﬁ Lpail  cosT

(e
— sk sy bad compontds
— Ao pusts.

Find the probability of making each of the above types of errors.
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‘mmie \ ; N
i @y\, , P, > g ;A m;j&hétp mm

77777777 1. Probability of rejecting a good batch: If p = 0.10 and n = 10, we
know that X ~ Bin(10,0.1), so decision mdd WT 4
P(X>2) 1-DP(X <) <2
a4 ¥ (ﬁjaj‘ + P(X> z)
"1 - binomdf (10, o ,2)

"y,
= 0030l 0. 022

J

2. Probability of passing a bad batch (with say p = 0.20): Now,
X ~ Biu(10,0.2), so o
P(X <2) = binomddf (10, 0-2, 2) ~ 0.,3#§
%(‘L 5N, P )

Suppose we want to reduce this probability by changing the decision rule
to: accept the batch only if one or fewer tested is defective. Recompute
parls one and two and compare.

O d qoed o - P(X S')

?(ZLT '>3(x>|)) _ i__ bmmu(% (10, 0.1, l)

:J O - ,’263‘? B fpnn 0.0Fo1]
L Placogt bad) = p(x 1) = bromedfCicon )
P:zo0.2. 5 0.3F58 | fmo0.6778

v Can we reduce the probabilities of both types of errorg? |
n=10 ) JoLet us change the sample size in the text procedure t¢ n = 20, /That is,
you accept a batch only if the number of defective itenis is 4 or less.
awpt 4 Recompute both probabilities. - —

2L PO = |—P(Xﬁ4)
= —_ bP'\UW\C—dKZOJO") 4)
~ o - OLPB\;F J’
2 PX 44> %(477,0,0"2_))73, 0.6296 L

():0-7" meW\CC{‘F(ZO)O.?—, 4}




Naturally, ’(A) where A is the event of accepting a bad batch depends
on the actual proportion of bad components in the batch. Calculating
P(A) for different values of p and graphing them yields the operating
characteristic (OC) curve of an acceptance sampling plan.

Practice exercises in Section 3.4: 47, 49, 55, 57, 59, 63, 65.
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3.5 Hypergeometric and negative binomial distribu-
tions
Recall the binomial distribution: ©m a binom CLCE‘t_

n->¢
. n X _ =g, -~
b(x;n,p) = (x)'j’-('}’) , X% '
LA Fx o n als 4 othaam<st . |
Conditioss ) " Coc o tomans ;S F
S - pS)= Congtad o
Instead of the approxithate probability model for sampling without re-
placement from a finite dichotomous population with a small sample size
n relative to population size IV, the hypergeometric distribution is h :
the exact probability model for the number of S’s in the sample.
The binomial rv X is the number of S’s when the number n of trials is |
fixed, whereas the negative binomial distribution arises from fixing
the number of 5’s desired and letting the number of trials be random.
Assumptions for the hypergeometric distribution: np

S C

1. A finite (size N) population where samples are taken.

_ totad S% penpr  amoy N
2. chhotomoug, and there are M successes in the population.
)
3. A sample of n individuals is selected without replacement in such

a way that each subset of size n is equally likely to be chosen. n Ma.ﬂs |

anJ(/w\ |
Cl‘M—fUl
5%@ random variable of interest is X' the number of S’s in the sample. M 6 5
The probability distribution of X depends on the parameters n, M, f\/ l
and N, so we wish to obtain P(X = ) = h(z;n, M, N). perst-

PROPOSITION If X is the number of S’s in a completely random
sample of size n drawn from a population consisting of M S’s and

K= # ] dwcttssns, POP"“W\M sl 4 /\/
then the probability distribution of X, called the hypergeometric dis-
tribution, is given by 4ot S AN =M

P(X=1?)=h(fﬂ;w\§,1¥)= ( ?>(n—7_>

78 /\/
onory n 'lYi/»Q} ( n >



MVM

NeM<n, maX=n=(N-M)=n-N+M >0

PROPOSITION (MEAN AND VARIANQE) The mean and variance of

the Wrw rvX having pmf h(x;n, M, N) are e catll -
M - b o~
E’(X>: n"N—_ V(X){ ( )X'VBP\("'P)
) E(X); r\(D

j) 'fw’n binom

The finite population correction factor is I\IL n
: - PRI

N1

V(X) =nPq

EXAMPLE An instructor who taught two sections of engineering stat-
i istics last term, the first with 20 students and the second with 30,
decided to assign a term project. After all the projects had been turned
in, the instructor randomly ordered them before grading. Consider the

first 15 graded projects. ig_;\" S denst te Wm@%ﬂtﬂa —

1. What is the probability that exactly 10 of these are from the

second section? -
o # o prfects
Te -—H’V‘a "’47, Pe{qemf"C ) >< r{ c F

o5, Mz%0, /50 e chiom 2
X

=10




L (xsn,MN): (1} MM)/N)

n-N+M ( <>L<y5) h( 10515, 30, S’O) (5 )
= 15-50+ 30 {o 50)

/S
2. What is the probability that at least 10 of these are from the

—————————r—

second section?

L\((og \5,30/@)
+ Ul S 30, SD)
) =
+ h (s

th Ui ——1 = P
-+ NAED; —_—)
3. What is the probability that at least 10 of these are from the

FIEID 0 (W3 (0) = h(10515 20,50)

h CH ; 15
(ll} -
Y4 -
T)l T PL (S )

4. What are the mean value and standard dcviation of the number
among these 15 that are from the second section?

' v - -
B0 =ns i sl SN e

=153 37

- O-1s 30 .20ﬁ
= 9 5 \f@?—:}'lg CLRCE

5. What are the mean value and standard deviation of the number
of projects not among these first 15 that are from the second
section? ‘

Ho ot n:zS_,
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D 6@(/)7\11/!2@ dﬁ>+

6 binomiak et
@) hypegeomibic 457
@ X:

SNegative binomial distribution

s

3

Experimental conditions for the negative binomial rv and distribu-
tion:

1. The experiment consists of a sequence of independent trials.

Dichotomous results.

o

3. P(Sontrial i) =pforalli=1,2,3,.... ,P‘yegf
| fixed
4. 'T'he experiment continues until a total of r successes have been
~obhserved, where r is a specified positive integer.

The random variable of interest is X, the number of failures that precede
the rth success; X is called a régative binomial random variable.

PROPOSITION The pmf of the negative binomial rv X with parameters
r = number of S’s and p = P(S) is | Qxﬂ r—|

Py

yoRdtd ro o
nb(xs;mp)= | x />]O (=P

5 1SS
ri successS

N —— — et - . . /

and mean and variance are

£(x)= r.(.%’ip) Vo= TP

-

EXAMPLE A couple want to have 2 girls. Find the probability that
they have 5 children to get 2 girls.

31

|
X+

a2 /TN r=i



4t X back
. — = = -':9* <t bows amep

_ /4 {d/uz,\,
nb(5$2/0'5>‘(3>() () - 4(9

EXAMPLE A family decides to have children until it hds three children
of the same gender. Assuming P(B) = P(G) = 0.5, what is the pmf of

X = the number of children in the family?

‘W% X = {,5/4),53 pCBN=) = £
b 5% ~ 344 9 Qx@if:

259 % | poe)
b | T3
= ‘———’—-/ —‘—__é; 3 JC;
SEEIOROIEIE - r|%
. 2
b ,‘2{5 ! 'g
. 4y Ay L _ 36 °
-~ 2 (2) & :(O'llG”E;L °
315 7 y o

R omt

Practice exercises in Section 3.5: all odds from 69 to 77.
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3.6 The Poisson probability distribution

In contrast to binomial, hypergeometric, and negative binomial dis-
tributions where they are all derived by starting with an experiment
consisting of trials or draws from which we apply the laws of probability
to find their distributions, the Poisson distributiony is not based on
any simple experiment, but instead by certain limiting operations.

DEFINITION A discrete random variable X is said to have a Poisson
distribution& with parameter i, (1 > 0) if the pmf of X is

p(; p) — B_M/‘Lm, fo( SSoNn F"(‘f ( A3 I‘)

x!

forz—0,1,2,3,...
Does p(z; 1) specify a legitimate pmf? Let us check.

- 1. positivity :

A X
z!
2. sum is 1. Use Taylor series for ¢” expanded about z = 0
M N 0
552 e AL -M AL

Some typical situations are:

1. Probability an earth quake of magnitude greater than 2.5 will hit
Vancouver tomorrow.

2. Probability that a big earth quake will hit Vancouver this year.
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3. Probability that at least one fatal car accident will occur on the
Sea-to-Sky highway this month.

4. Probability that a skier who goes out of bounds will need to be
rescued this winter.

Events that occur randomly in time like earth quakes, accidents, com-
puter system crashes, or in space like the number of flaws in a roll of
fabric, the number of weak spots in a length of piping where a known
average rate is available are often modelled by the Poisson distribution.

PROPOSITION  Suppose that in the binomial pmf b(z;n,p), we let n —
oo and p — 0 in such a way that np approaches a value u > 0. Then

b(X5nsP) —> PLX ;1) @:AF

e

OK to approximate a binomial pmf by the DPoisson pmf whenever
CW > 100, p < 0.01 and np < 20. This is more relaxed than the
guidelines given in the text of np < 5& . »50.

The mean and variance of a rv X with a Poisson distribution with
parameter p is also u.

EXAMPLE  Suppose that only 0.10% of all computers of a certain type
experience CPU failure during the warranty period. Consider a sample
of 10000 computers.

1. What are the expected value and standard deviation of the number
of computers in the sample that have the defect? </

dtcctre be He tresd Commputes Tails
P(S)=0 1% , n=10.000 —
b(xsn,p) = ECX):ioaou,;';z’°®=\N(X) =Jnf(/'}?>

2. What is the (approximate) probability that more than 10 sampled
computers have the defect?

y x 316




(o

ol 4o wsm PO, L=
- 4= X<lo
P( XZIO/)) - 4 M

¢ dF it poissecdf
- 1- F(10;49) poiseon C”ht//'f’,',f)
2 0.4 1%

3. What is the (approximate) probability that no sampled computer
has the defect?

P( X=O> = &O(O; 10) = \DOiCScmPO('F' Qlo,o)

% o0.cco0c U SHO X U 5 HoXxI0

NS

The mean and variance of a rv X with a Poisson distribution with
parameter u is also p.

The Poisson process

Application of the Poisson distribution: occurrence of events of some
type over time like visits to a particular website, pulses of some sort,
recorded by a counter, email messages sent to a particular address,
accidents in an industrial facility, ete. The following assumptions about
the way in which the events of inferest occur accompany the Poisson
distribution.

1. There exists a parameter o > 0 such that for any short timec
interval of length Atf, the probability that exactly one event

occurs is - o(a
. At ‘\"*\
ol -/ t =+ °( ) At>0 bt

2. The probability of more than one event occurring during At is

o(At) , S0 prk q noW% 2t o | O{A(-t;)——o(a/)

3. The number of events occurring during the time interval At is
independent of the number that occur prior to this time interval.

v o menmavy less  pracss ,
PROPOSITIONm@(t (76 ——olt'?(ol_wké # JZ MjS (k)
T wu = dt

durs, a e tateal g Lot T

=0




E(# g o) dundy suchtme ind o
o('t/ by Ixpechd  # ou,uu.7 o UNAT
' mw,% e &5 X, called  Ho

Other common variables nusually modelled by the Poisson process are
1. the number of customers arriving at a service facility,
2. the number of telephone calls per hour at a switch board,
3. the number of hits on a website,

4. the number of cars passing through an intersection.

EXAMPLE The number of people arriving for treatment at Burnaby
General Hospital’s emergency room can be modelled by a Poisson
process with rate parameter of ﬁvo@ ol = 5/)‘ ~

1. What is the probability that exactly four arrivals occur during a

_ articular hour? n

t=1 2 5.4 K= ¢ i,
- 4

= . -1 )
) = ¢ _Q;SZr_’l :Fmssmyﬁ(i ¢)
' X, 0-1F5S
2. What is the probability that at least four people arrive during a
particular hour? L~ pCo; ) «~ pPC1;5) —f(?—; 5')——/’(355)

P(X24) —1— P X<3)
—'\ —FatKSUV\CG('(Z(‘gJ.S)

—

X 0, #3350




= 3. How many people do you expect to arrive during ?{ 45-minute /

period? _ 3
t= z hr.

,,,,,,,, Bayes
rﬂwﬁé’l?
CWB 9)@1/1) i?m'f’ VS Cd‘F /é
distribatn &

Practice exercises in Section 3.6: 79, 81, 83, 85, 91.
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Chapter'4: Continuous Random Variables & Prob-
ability Distributions |

4.1 Probability density functions

Recall discrete vs. continuous random variables:

e A discrete random variable X (ﬁ T
i N
possitla kales,  a~t

i be lishd e Infinde Sepusy

e A continuous random variable ><

Vades,  Fmn  an Wl o

EXAMPLE RRainfall in Greater Vancouver during February. Try (o

record daily, every 12 hours, every 3 hours, every hour. What is the
difference? '

{7 9% "6'30

K Riemtnn  Swim

DEFINITION Let X be a continuous rv. Then a probability distri-
bution or probability density function (pdf) of X is a function
f(z) such that for any two numbers a and b with a <b,

b
P((ISXSZ)) = J __F(X) Jy
o 89




Graphical interpretation:

A 5
2
L J

a h
Conditions for f to be a legitimate pdf:

&

1. non-negativity o '
Loy >0 o L T éd“r*)“@

2. totality ‘goa _&(){) d)( N

— 00

‘sz):w.

Uniform distribution /(\

EXAMPLE *From our classroom to the bus station is 50 metres. Let
X be the distance from our classroom on the path to the bus station.
Your falling at position X is subject to uncertainty. One possible pdf
for X is:

[ ._\_ X € [0,5'0_]

——

=

J
( ’ O , O'H\I/V\AXQ( .
Ch st

1. Find the probability that you fall before midway.

2. Find the probability that you fall between 20m and 40 m from
our classroom.
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