Math 126
Summer 2015
Dr. Lily Yen
Show all your work

Name:
Score:

No Calculator permitted in this part. Read the questions carefully. Show all your work and clearly indicate your final answer. Use proper notation.
Problem 1: First draw $x+y^{2}=3$ and $x-2 y=0$. Shade the region enclosed by these two graphs.

Score: /2
Use integrals to express the following. Do not evaluate your integrals. Draw a cross-sectional strip for each solid of rotation.
a. The area of the shaded region.

If $x+y^{2}=3$ and $x-2 y=0$, then $y^{2}+2 y=3$, so $y^{2}+2 y-3=0$, so $(y-1)(y+3)=0$, so $y=1$ or $y=-3$. Thus the intersection points are $(2,1)$ and $(-6,-3)$. The area is then $\int_{-3}^{1}\left(3-y^{2}\right)-(2 y) d y$ which is easy to evaluate to $\frac{32}{3}$.

Score: /2

b. The volume obtained if the region is rotated about $y=-3$, using the method of cylindrical shells.
$\int_{-3}^{1} 2 \pi(y+3)\left(3-y^{2}-2 y\right) d y$ which is easy to evaluate to $\frac{128}{3} \pi$.
Score: /2
c. The volume obtained if the region is rotated about $x=5$, using the method of slicing (washers/disks).
$\pi \int_{-3}^{1}(5-2 y)^{2}-\left(5-\left(3-y^{2}\right)\right)^{2} d y$ which is easy to evaluate to $\frac{576}{5} \pi$.
Score: /2
d. The volume of a solid that has the shaded region as its base, and cross-sections perpendicular to the y-axis are semi-circles.
$\frac{\pi}{2} \int_{-3}^{1}\left(\frac{\left(3-y^{2}\right)-2 y}{2}\right)^{2} d y$ which is easy to evaluate to $\frac{3814}{15} \pi$.
Score: /2
e. The volume of a solid with the shaded region as its base, and cross-sections perpendicular to the x-axis are rectangles whose length above the $x-y$ plane is twice its width on the $x-y$ plane.
$\int_{-6}^{2} 2\left(\frac{1}{2} x+\sqrt{3-x}\right)^{2} d x+\int_{2}^{3} 2(2 \sqrt{3-x})^{2} d x$ which is easy to evaluate to $32+4=36$.
Score: /2

Problem 2: Evaluate the following integrals exactly.
a. $\int x e^{2 x} d x$

Use integration by parts: $\int x e^{2 x} d x=x \cdot \frac{1}{2} e^{2 x}-\int 1 \cdot \frac{1}{2} e^{2 x} d x=\frac{1}{2} x e^{2 x}-\frac{1}{4} e^{2 x}+C$

Score: /3
b. $\int \frac{4 x^{2}+2 x-3}{(2 x-5)(x+2)} d x$

Use the method of partial fractions: If $\frac{4 x^{2}+2 x-3}{(2 x-5)(x+2)}=2+\frac{A}{2 x-5}+\frac{B}{x+2}$, then $4 x^{2}+2 x-3=2(2 x-5)(x+2)+A(x+2)+B(2 x-5)$. Substituting -2 for x yields that $B=-1$. Substituting $\frac{5}{2}$ for x yields that $27=\frac{9}{2} A$, so $A=6$.
Thus $\int \frac{2 x^{2}+2 x-3}{(2 x-5)(x+2)} d x=\int 2+\frac{A}{2 x-5}+\frac{B}{x+2} d x=2 x+\frac{A}{2} \ln |2 x-5|+B \ln |x-2|+C=$ $2 x+6 \ln |2 x-5|-\ln |x+2|+C$.

Score: /4
c. $\int_{2}^{3} \frac{1}{(x-2)^{3 / 4}} d x$

Needs an improper integral because 2 is not in the domain.
$\lim _{t \rightarrow 2^{+}} \int_{t}^{3} \frac{1}{(x-2)^{3 / 4}} d x=\left.\lim _{t \rightarrow 2^{+}} 4(x-2)^{1 / 4}\right|_{t} ^{3}=4 \sqrt[4]{1}-4 \sqrt[4]{0}=4$.

Dr. Lily Yen
Show all your work
Calculators permitted from here on.
Problem 3: First, draw the following graphs on the coordinate system, then shade the region bounded by them:

$$
f(x)=\sqrt{1+\cos (x)}, \quad g(x)=\ln \left(\frac{x}{\pi}\right), \quad \text { and } \quad h(x)=-x-\pi
$$

Set up the integral for the area of the shaded region, then approximate the integral to 3 decimal places.

The intersection points are as labelled. The desired area is therefore

$$
\begin{aligned}
& \int_{-\pi}^{0.120} f(x)-h(x) d x \\
& \quad+\int_{0.120}^{\pi} f(x)-g(x) d x \\
& \approx 8.319+5.287=13.606
\end{aligned}
$$

Score: /5
Problem 4: Find the point(s) at which the value of $f(x)=e^{x} / r, r>0$ equals the average value of the function on the interval $[0, r]$. Hint: The coordinates are expressed in terms of r.

The average value of $f(x)$ on $[0, r]$ is $\frac{1}{r} \int_{0}^{r} f(x) d x=\frac{1}{r} \int_{0}^{r} \frac{1}{r} e^{x} d x=\left.\frac{1}{r^{2}} e^{x}\right|_{0} ^{r}=\frac{e^{r}-1}{r^{2}}$. Therefore $f(x)$ equals its average when $f(x)=\frac{e^{r}-1}{r^{2}}$, so $\frac{e^{x}}{r}=\frac{e^{r}-1}{r^{2}}$, so $e^{x}=\frac{e^{r}-1}{r}$, so $x=\ln \left(\frac{e^{r}-1}{r}\right)$.

Problem 5: Find the work done by steadily lifting a leaking bucket which is full at the bottom weighing 100 pounds but only weighing 40 pounds at the top 30 feet above. Assume that the rope weighs $0.07 \mathrm{lb} / \mathrm{ft}$ and the bucket leaks at a steady rate.

At x feet from the top, the mass of the bucket is $40+2 x$ and the mass of the rope is $0.07 x$. The work required to lift bucket and rope the short distance $d x$ is therefore $(40+2.07 x) d x$. The total work is then $\int_{0}^{30} 40+2.07 x d x=40 x+\left.1.035 x^{2}\right|_{0} ^{30}=2131.5 \mathrm{lb}-\mathrm{ft}$

Score: /5
Problem 6: Built around 2600 BC , the Great Pyramid of Giza in Egypt is 146 m high and has a square base of side 230 m . Find the work (against gravity) required to build the pyramid if the density of the stone is estimated at $2000 \mathrm{~kg} / \mathrm{m}^{3}$.

Each horizontal slice of the pyramid is a square. At height h from the ground, the side length of the square is $230\left(1-\frac{h}{146}\right)$, so if the slice has thickness $d h$, it has volume $\left(230\left(1-\frac{h}{146}\right)\right)^{2} d h$ and mass $2000\left(230\left(1-\frac{h}{146}\right)\right)^{2} d h$.
The slice has to be lifted the distance h, which requires the work $2000\left(230\left(1-\frac{h}{146}\right)\right)^{2} g h d h$, where g is the acceleration due to gravity.
The total amount of work is then
$\int_{0}^{146} 2000\left(230\left(1-\frac{h}{146}\right)\right)^{2} g h d h=2000 g \int_{0}^{146} 52900 h-724.7 h^{2}+2.482 h^{3} d h=$
$2000 g \times 9.397 \times 10^{7}=1.879 \times 10^{11} g=1.842 \times 10^{12} \mathrm{~J}=1.842 \mathrm{TJ}$ (using $9.8 \mathrm{~m} / \mathrm{s}^{2}$ for g).

