Math 126
Summer 2014
Dr. Lily Yen
Show all your work

Name:
Score: \qquad /46

No Calculator permitted in this part. Read the questions carefully. Show all your work and clearly indicate your final answer. Use proper notation.
Problem 1: Let $A(x)=\int_{0}^{x} f(t) d t$, where f is the function graphed below.

a. $A(x)$ has a local maximum at the x-coordinates of (circle all that apply):

$$
P \quad Q \quad R \quad S \quad T
$$

b. $A(x)$ has a local minimum at the x-coordinates of (circle all that apply):

$$
P \quad Q \quad R \quad S \quad T
$$

c. Which inequality is true for all x in the interval over which the graph of f is shown? (Circle all that apply.)

$$
A(x) \leq 0 \quad A(x) \geq 0 \quad \text { neither both }
$$

Score: /3
Problem 2: A particle begins at the origin at time $t=0$ and moves with velocity $v(t)$ as shown below.

a. Find the distance travelled by the particle after 7 seconds?

10 metres

b. How many times does the particle return to the origin in the first 12 seconds?

Once, $t=6.45$
c. Find the largest time interval when the particle is moving towards the origin.

$$
t \in[4,6.45]
$$

d. What is the particle's maximum distance from the origin?

$$
6 \cap, s(12)=-6
$$

e. Directly on the graph, draw in and shade the approximating rectangles representing L_{6}.

Problem 3: Evaluate exactly $\int_{-1}^{2}|(x-1)(x+2)| d x$

$$
\begin{aligned}
& \int_{-1}^{2}|(x-1)(x+2)| d x=\int_{-1}^{1}|(x-1)(x+2)| d x+\int_{1}^{2}|(x-1)(x+2)| d x= \\
& \int_{-1}^{1}-(x-1)(x+2) d x+\int_{1}^{2}(x-1)(x+2) d x=\int_{-1}^{1}-x^{2}-x+2 d x+\int_{1}^{2} x^{2}+x-2 d x= \\
& -\frac{1}{3} x^{3}-\frac{1}{2} x^{2}+\left.2 x\right|_{-1} ^{1}+\frac{1}{3} x^{3}+\frac{1}{2} x^{2}-\left.2 x\right|_{1} ^{2}= \\
& \left(-\frac{1}{3}-\frac{1}{2}+2\right)-\left(\frac{1}{3}-\frac{1}{2}-2\right)+\left(\frac{8}{3}+2-4\right)-\left(\frac{1}{3}+\frac{1}{2}-2\right)=\frac{5}{3}-\frac{1}{2}+4=\frac{10}{6}-\frac{3}{6}+\frac{24}{6}=\frac{31}{6}=5 \frac{1}{6} .
\end{aligned}
$$

Score: /4
Problem 4: Determine the exact area of the shaded region bounded by the y-axis, the curve given by $x=\frac{1}{y}$, and the lines $y=-1$ and $y=-4$.

Integrating on y, the area is
$\int_{-4}^{-1} 0-\frac{1}{y} d y=-\int_{-4}^{-1} \frac{1}{y} d y=-\left.\ln |y|\right|_{-4} ^{-1}=(-\ln (1))-(-\ln (4))=\ln (4)=2 \ln (2) \approx 1.386$

Score: /2
Problem 5: Integrate the following analytically.
a. $\int 3 u \sqrt{4+u} d u$

$$
\text { Substitute } x=4+u \text {. Then } \frac{d x}{d u}=1 \text {, so } d u=d x \text { and }
$$

$\int 3 u \sqrt{4+u} d u=\int 3(x-4) \sqrt{x} d x=\int 3 x^{3 / 2}-12 x^{1 / 2} d x=\frac{6}{5} x^{5 / 2}-8 x^{3 / 2}+C=$ $\frac{6}{5}(4+u)^{5 / 2}-8(4+u)^{3 / 2}+C$

Score: /3
b. $\int_{\pi / 2}^{\pi} \sin \left(\frac{5 x-\pi}{6}\right) d x$

$$
\int_{\pi / 2}^{\pi} \sin \left(\frac{5 x-\pi}{6}\right) d x=-\left.\frac{6}{5} \cos \left(\frac{5 x-\pi}{6}\right)\right|_{\pi / 2} ^{\pi}=\left(-\frac{6}{5} \cos \left(\frac{2}{3} \pi\right)\right)-\left(-\frac{6}{5} \cos \left(\frac{1}{4} \pi\right)\right)=
$$

$$
-\frac{6}{5} \times \frac{-1}{2}+\frac{6}{5} \frac{\sqrt{2}}{2}=\frac{3+3 \sqrt{2}}{5}
$$

Dr. Lily Yen

Show all your work

Calculators permitted from here on.
Problem 6: Express the following limit as an integral and evaluate.

$$
\lim _{N \rightarrow \infty} \frac{\pi}{6 N} \sum_{j=1}^{N} \sin \left(\frac{\pi}{3}+\frac{\pi j}{6 N}\right)
$$

Sketch and shade the corresponding region whose area the limit represents. Compute the integral exactly.

Since $\frac{\pi}{3}+\frac{\pi}{6}=\frac{\pi}{2}$, this is the Riemann sum (evaluated at the right-hand endpoint) for $\int_{\pi / 3}^{\pi / 2} \sin (x) d x=-\left.\cos (x)\right|_{\pi / 3} ^{\pi 2}=-\cos \left(\frac{\pi}{2}\right)+\cos \left(\frac{\pi}{3}\right)=0+\frac{1}{2}=\frac{1}{2}$.

Score: /3
Problem 7: Evaluate the following integrals exactly using the Fundamental Theorem of Calculus.
a. $\frac{d}{d x} \int_{2}^{x} \sqrt{t^{5}-1} d t$

Score: /1
By the Fundamental Theorem of Calculus,
b. $\int \frac{d}{d t} \sin \left(e^{t}\right) d t$

$$
\sqrt{x^{5}-1}
$$

$$
\sin \left(e^{t}\right)+C
$$

Score: $\quad / 1$
c. $\frac{d}{d t} \int_{e^{t}}^{t^{4}} u^{3}+\cos \left(u^{2}\right) d u$

Let $g(x)=\int_{0}^{x} u^{3}+\cos \left(u^{2}\right) d u$. Then $g^{\prime}(x)=x^{3}+\cos \left(x^{2}\right)$. Therefore $\frac{d}{d t} \int_{e^{t}}^{t^{4}} u^{3}+\cos \left(u^{2}\right) d u=\frac{d}{d t}\left(g\left(t^{4}\right)-g\left(e^{t}\right)\right)=g^{\prime}\left(t^{4}\right) \cdot 4 t^{3}-g^{\prime}\left(e^{t}\right) \cdot e^{t}=$ $\left(t^{12}+\cos \left(t^{8}\right)\right) \cdot 4 t^{3}-\left(e^{3 t}+\cos \left(e^{2 t}\right)\right) \cdot e^{t}=4 t^{15}+4 t^{3} \cos \left(t^{8}\right)-e^{4 t}-e^{t} \cos \left(e^{2 t}\right)$

Score: /3
Problem 8: Evaluate the following integral exactly.

$$
\int_{1}^{\sqrt{3}} \frac{d x}{\tan ^{-1}(x)\left(1+x^{2}\right)}
$$

Substitute $u=\tan ^{-1}(x)$. Then $\frac{d u}{d x}=\frac{1}{1+x^{2}}$, so $d x=\left(1+x^{2}\right) d u$. Therefore
$\int_{1}^{\sqrt{3}} \frac{d x}{\tan ^{-1}(x)\left(1+x^{2}\right)}=\int_{\pi / 4}^{\pi / 3} \frac{\left(1+x^{2}\right) d u}{u\left(1+x^{2}\right)}=\int_{\pi / 4}^{\pi / 3} \frac{1}{u} d u=\ln |u|_{\pi / 4}^{\pi / 3}=\ln \left(\frac{\pi}{3}\right)-\ln \left(\frac{\pi}{4}\right)=$ $\ln (\pi)-\ln (3)-\ln (\pi)+\ln (4)=\ln (4)-\ln (3)=2 \ln (2)-\ln (3) \approx 0.2877$

Problem 9: Evaluate the following integral analytically.

$$
\int_{0}^{3 / 4} \frac{d x}{\sqrt{9-16 x^{2}}}
$$

If $u=\frac{4}{3} x$, then $\frac{d u}{d x}=\frac{4}{3}$, so $d x=\frac{3}{4} d u$ and
$\int_{0}^{3 / 4} \frac{d x}{\sqrt{9-16 x^{2}}}=\int_{0}^{1} \frac{\frac{3}{4} d u}{\sqrt{9-9 u^{2}}}=\int_{0}^{1} \frac{1}{3 \sqrt{1-u^{2}}} \cdot \frac{3}{4} d u=\frac{1}{4} \int_{0}^{1} \frac{1}{\sqrt{1-u^{2}}} d u=\left.\frac{1}{4} \sin ^{-1}(u)\right|_{0} ^{1}=\frac{1}{4} \cdot \frac{\pi}{2}-\frac{1}{4} \cdot 0=\frac{\pi}{8}$.

Score: /3
Problem 10: On a hot summer day, Burnaby consumes water at the rate of

$$
r(t)=100+72 t-3 t^{2}
$$

(in millions of litres per hour), where t is the number of hours past midnight. Answer the following by writing logical and coherent steps which lead to your final answer. No mark will be given to a single number answer.
a. When is water consumed at the highest rate?

Since $0=r^{\prime}(t)=72-6 t$ when $t=12$, and $r^{\prime \prime}(t)=-6<0$, the rate is maximal when $t=12$, so 12 hours after midnight, so at noon.

Score: /1
b. Find the daily water consumption.

In a (very) short interval of length $d t$ hours, Burnaby consumes $r(t) d t$ millions of litres of water. Therefore the daily consumption is $\int_{0}^{24} r(t) d t=\int_{0}^{24} 100+72 t-3 t^{2} d t=100 t+36 t^{2}-\left.t^{3}\right|_{0} ^{24}=9312$ million litres.

Score: /2
c. How much water is consumed between 6 pm and midnight?

As in the previous part,
$\int_{18}^{24} r(t) d t=\int_{18}^{24} 100+72 t-3 t^{2} d t=100 t+36 t^{2}-\left.t^{3}\right|_{18} ^{24}=1680$ million litres.

Problem 11: Match each graph of $y=f^{\prime}(x)$ (A-E) with the graph of a possible antiderivative, $y=f(x)(1-10)$.

Anti-derivative graphs:

