Math 126
Summer 2007
Dr. Lily Yen
No Calculator permitted in this part. Read the questions carefully. Show all your work and clearly indicate your final answer. Use proper notation.
Problem 1: For each of the following sequences, determine (with analytical reasons) whether the sequence converges or diverges. If the sequence converges, find its limit.
a. $\left\{(-1)^{n} \tan \left(\frac{(2 n-1) \pi}{4}\right)\right\}_{n=0}^{\infty}$ \square
b. $a_{n}=\frac{4^{n}}{(n+5)^{2 n}}$ \square
c. $\left\{\frac{\ln \left(n^{2}\right)-2 n^{3}}{4 n^{2}+5}\right\}_{n=1}^{\infty}$ \square

Problem 2: Evaluate

$$
\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}=\square
$$

Score: /2

Problem 3: Find the radius of convergence and the interval of convergence of each of the following power series.
a. $\sum_{n=0}^{\infty} \frac{2^{n}(x+1)^{n}}{(n+3)^{2}}$ \square
b. $\sum_{n=1}^{\infty} \frac{(n+5)^{2} x^{n}}{\pi^{n}}$ \square
c. $\sum_{n=0}^{\infty} n!(3 x-7)^{n}$

Score: /6

Math 126
Summer 2007
Dr. Lily Yen
Calculator permitted from here on
Problem 4: Consider the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ defined recursively as follows:

$$
a_{1}=2, \quad a_{2}=3, \quad a_{n}=\frac{a_{n-1}+a_{n-2}}{2}, \quad n \geq 3
$$

Find a_{20} accurate to 3 decimal places.
Find $\lim _{n \rightarrow \infty} a_{n}$.

Problem 5: Let $f(x)=\ln (2-x)$, find the 4th order Taylor Polynomial $P_{4}(x)$ for $f(x)$ about $a=1$.

Determine graphically the largest interval containing $x=1$ in which $P_{4}(x)$ approximates $f(x)$ to within 0.01. Give interval endpoints to 2 decimal places \square, and list the Y-functions which are plotted on your TI.

Score: /5

Problem 6: Determine a power series representation for the function,

$$
h(x)=\frac{x^{2}}{5-x}
$$

and determine the radius of convergence.
Score: /3

Problem 7: Find the Taylor Series for the function $f(x)=5^{-x}$ about $a=2$. Give your final answer in simplified form using the \sum notation. Also verify that the series converges to $f(x)$. You do not need to find the interval of convergence.

Score: /5

