Math 126 Summer 2007 Dr. Lily Ven

Test 3

Name:

Dr. Lily Yen Show all your work Score: ___/30

No Calculator permitted in this part. Read the questions carefully. Show all your work and clearly indicate your final answer. Use proper notation.

Problem 1: For each of the following sequences, determine (with analytical reasons) whether the sequence converges or diverges. If the sequence converges, find its limit.

a.
$$\left\{ (-1)^n \tan \left(\frac{(2n-1)\pi}{4} \right) \right\}_{n=0}^{\infty}$$

b.
$$a_n = \frac{4^n}{(n+5)^{2n}}$$

c.
$$\left\{ \frac{\ln(n^2) - 2n^3}{4n^2 + 5} \right\}_{n=1}^{\infty}$$

Problem 2: Evaluate

$$\frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \frac{1}{30} + \frac{1}{42} + \frac{1}{56} + \frac{1}{72} + \frac{1}{90} = \boxed{}$$

Score: /2

Problem 3: Find the radius of convergence and the interval of convergence of each of the following power series.

a.
$$\sum_{n=0}^{\infty} \frac{2^n (x+1)^n}{(n+3)^2}$$

b.
$$\sum_{n=1}^{\infty} \frac{(n+5)^2 x^n}{\pi^n}$$

c.
$$\sum_{n=0}^{\infty} n! (3x-7)^n$$

Score: /6

Math 126 Summer 2007 Dr. Lily Yen

Test 3

Show all your work

Name:		
name:		

Calculator permitted from here on.

Problem 4: Consider the sequence $\{a_n\}_{n=1}^{\infty}$ defined recursively as follows:

$$a_1 = 2$$
, $a_2 = 3$, $a_n = \frac{a_{n-1} + a_{n-2}}{2}$, $n \ge 3$

Find a_{20} accurate to 3 decimal places.

Find $\lim_{n\to\infty} a_n$.

Score: /3

Problem 5: Let $f(x) = \ln(2-x)$, find the 4th order Taylor Polynomial $P_4(x)$ for f(x) about a = 1.

Determine graphically the largest interval containing x=1 in which $P_4(x)$ approximates f(x) to within 0.01. Give interval endpoints to 2 decimal places and list the Y-functions which are plotted on your TI.

 $y_{
m max} =$ $y_{
m min} =$ $x_{
m min} =$ $x_{
m max} =$

Score: /5

Problem 6: Determine a power series representation for the function,

$$h(x) = \frac{x^2}{5 - x}$$

and determine the radius of convergence.

Score: /3

Problem 7: Find the Taylor Series for the function $f(x) = 5^{-x}$ about a = 2. Give your final answer in simplified form using the \sum notation. Also verify that the series converges to f(x). You do not need to find the interval of convergence.