| Math 126     | Test $1$           | Name:  |     |  |
|--------------|--------------------|--------|-----|--|
| Fall 2016    |                    | -      | 110 |  |
| Dr. Lily Yen | Show all your work | Score: | /46 |  |

No Calculator permitted in this part. Read the questions carefully. Show all your work and clearly indicate your final answer. Use proper notation.

**Problem 1**: Find an explicit expression for f(t) in the following definite integral.

$$\lim_{n \to \infty} \left( \sum_{k=1}^{n} \sin\left( 5 + \frac{(\pi - 3)k}{n} \right) \frac{1}{n} \right) = \int_{5}^{\pi + 2} f(t) \, dt$$

Score: /2

**Problem 2**: Consider the following function f defined for x in [-4, 6], and answer the questions below. Exact evaluations only.









e. Directly on the grid, draw  $M_5$  for  $\int_{-4}^{6} f(x) dx$ .

**Problem 3**: Find the expression of a Riemann sum with n intervals using the rectangular approximation method on the midpoints to estimate the area bounded by  $f(x) = 3x - x^2$  and the *x*-axis. Draw the region of interest and  $M_n$  for a particular n.

**Problem 4**: The graph below shows  $f(x) = x \cos(x)$ . Let  $F(x) = \int_0^x t \cos(t) dt$ .



a. Locate the x-value(s) in  $[0, 5\pi/2]$  where F(x) attains local maxima.

- b. Determine the x-value(s) in  $[0, 5\pi/2]$  where F(x) attains the global maximum.
- c. How many zeroes (roots) does F(x) have in  $[0, 5\pi/2]$ ?
- d. Label the inflection points of F(x) with A, B, etc. on  $[0, 5\pi/2]$  directly on the graph of f above. For each one, state whether the concavity changes from up to down or from down to up.

Math 126<br/>Fall 2016Test 1<br/>Show all your workName:Dr. Lily YenShow all your work-Calculators permitted from here on.-Problem 5: Integrate the following analytically.-

a. 
$$\int_{x/3}^{x/5} \sec^2(u) \, du$$

b. 
$$\int (t+9)^{-3} dt$$

c. 
$$\int \csc^5(\theta) \cos(\theta) \, d\theta$$

d. 
$$\int \frac{1}{\sqrt{16 - 9x^2}} \, dx$$

e.  $\int \cot(x) \ln(\sin(x)) dx$ 

Page 3

Score: /2

Score: /3

Score: /4

**Problem 6**: Lily drives a distance of 20 km, accelerating uniformly from rest to 60 km/h. Graph her velocity versus time. How long does it take for her to reach her final speed?

Score: /3 **Problem 7**: The graphs below show the height velocity curves of Alexandra and Bartholomew between ages 2 and 17. Assuming that Alexandra and Bartholomew attain average heights in Canada, answer the following questions.



a. Which curve represents Alexandra's? Explain how you can tell.

- b. Compare the start of Alexandra's growth spurt to the start of Bartholomew's. Give their ages before you compare them.
- c. At the highest rate of growth, how many centimetres a year does Bartholomew grow?

Score: /3

Problem 8: The traffic flow rate past a certain point on a highway is

$$q(t) = 3000 + 2000t - 300t^2$$

(t in hours), where t = 0 is 8 AM. Use rectangular approximation method to estimate the number of cars passing by from 8 AM to 10 AM by filling the table below.

| Approx | n = 10 | n = 100 | n = 200 |
|--------|--------|---------|---------|
| $L_n$  |        |         |         |
| $R_n$  |        |         |         |

What is the limit? Explicitly write out functions/program(s) you use or enter in your graphing calculator.

**Problem 9**: Evaluate the following exactly using the Fundamental Theorem of Calculus.

a. Let 
$$f(\theta) = \int_{1}^{2\theta} \cot(u) \, du$$
. Find  $f'(\theta)$ .

Score: /1

b. Find 
$$\frac{d}{dx} \int_{\sin(x)}^{\ln(x)} \frac{t}{1+t} dt$$
.

Score: /2

c. 
$$\frac{d}{dx} \int_{e}^{4\pi} \log(t^2 + 3t) dt$$