Ma	$^{ ext{th}}$	12	3-	01	
Sur	nn	er	2	025)
$D_{\mathbf{r}}$	Li	137	V	on.	

Assignment 4 Show all your work

Name:		
Number:		
Signature:		
Score:	/10	

Problem 1: Answer each question to two decimal place accuracy when appropriate. Write out steps for each.

a. Convert the fraction three quarters into a percent.

75%

- $\frac{3}{4} = 75\%$
- b. Find 125 % of 80.

100

- $1.25 \times 80 = 100$
- c. What fraction of 350 is 280? Simplify to lowest terms.

4/5

- $\frac{280}{350} = \frac{4}{5}$
- d. 12 is 6% of what number?

200

- If 0.06x = 12, then $x = \frac{12}{0.06} = 200$
- e. When you pay a 35-dollar monthly cellphone/data package, how much in taxes do you

need to pay? Hint: We have a 5% GST and 7% PST.

\$4.20

- 12% of \$35 is $0.12 \times $35 = 4.20 ,
- f. The following is a quote from Entertainment Software Association of Canada.

In 2021, the global industry will generate over US\$176 billion in revenue, a 21% increase from 2019. The Canadian video game industry has followed a similar trajectory over the same period. In 2021, the industry generated an estimated US\$3.4 billion in revenue, having grown by 20% since 2019.

What was the revenue in the Canadian video game industry from 2019?

US\$ 2.83 billion

If Global, then $176 \times 10^9 = 1.2 \times x$, so $x = 176 \times 10^9/1.2 \approx 146.67 \times 10^9$ dollars. Let x in dollars represent the revenue in Canadian video game industry from 2019. Then $3.4 \times 10^9 = 1.2 \times x$ so $x = 3.4 \times 10^9/1.2 \approx 2.83 \times 10^9$

Problem 2: Brian's grandmother invests $$50\,000$ at a rate of $4.55\,\%$ compounded monthly. Find the time in years that it takes her investment to double.

If $50\,000(1+\frac{0.0455}{12})^{12t}=2\times 50\,000$, for t in years, then $(1.0037916667)^{12t}=2$. Taking log on both sides, then dividing by 12 yields that $t\approx 15.26$ years.

Score: /2

Problem 3: David needs to decide which of the following two investment options is better: an annual interest rate of $4.35\,\%$ compounded daily or an annual interest rate of $4.4\,\%$ compounded semi-annually. Show all calculation which leads to your conclusion.

With the first investment, after one year you would have multiplied the principal by $\left(1 + \frac{0.0435}{365}\right)^{365} = 1.0445$, so the effective rate is 4.45%.

With the second investment, you get $\left(1 + \frac{0.044}{2}\right)^2 = 1.0445$, so the effective rate is 4.45 %. Therefore the second option is slightly better.