Math 123-02
Summer 2024
Dr. Lily Yen
Lisa Lajeunesse

Assignment 3
 Show all your work

Name:

Number:

Signature:
Score:
_/20
Problem 1: Find the measure of angle x to make a hole-in-one at the miniature golf course hole. Use the following two facts to find x :
a. The angle the ball makes as it hits a flat surface has the same measure as the angle the ball makes as it leaves the same surface.
b. The interior angle sum of a triangle is 180°.

Starting at 63° using condition (a), alternate interior angles of parallel lines, and complementary angles of a right triangle, we reach $x=27^{\circ}$.

Score: /3
Problem 2: Set up a table for convex polygons' angle sums beginning with a triangle, followed by a quadrilateral, a pentagon, and so on. From your table, derive a formula for the measure of the interior angle sum in a regular n-sided polygon.

Polygon:	Δ	\rangle		9		\square	n-gon
Angle sum:	180	360	540	720	900	1080	180($n-2$)

$\overline{\text { Lisa changed the question to ask for one interior angle, so an interior angle has }}$ $180(n-2) / n$ degrees.

Score: /3
Problem 3: Below is a 5×15 grid containing a big triangle. Find the area and perimeter of the big triangle. Show your work.

Use the area of the rectangle minus the area of the three corner triangles:
$5 \times 15-(1 \times 15+3 \times 4+12 \times 5) / 2=75-43.5=31.5$ square units.
Since the corner triangles are right-angled, $a^{2}=1^{2}+15^{2}=226$, so $a=\sqrt{226}$;
$b^{2}=5^{2}+12^{2}=169$, so $b=\sqrt{169}=13$; and $c^{2}=4^{2}+3^{2}=25$, so $c=\sqrt{25}=5$. Therefore the perimeter of the given triangle is $a+b+c=\sqrt{226}+13+5=18+\sqrt{226} \approx 33.03$.

Problem 4: Draw a reflection of the given figure along the given line.

Problem 5: Find $x=4 \mathrm{Cm}$. Name the triangles and provide reasons for your claim.

The two inner angles are vertically opposite so equal. Since each triangle has a right angle, the third angles have to be equal, too. Hence the triangles are similar and $\frac{x}{6}=\frac{8}{12}$, so $x=6 \times \frac{8}{12}=4$.

Score: $/ 3$
Problem 6: Draw a square-based rectangular prism of height $3 \pi \mathrm{~cm}$ and a volume of $12 \pi \mathrm{~cm}^{3}$. Suppose that a right cylinder of height 3 cm also have the same volume as the rectangular prism. Which solid has a bigger surface area? Show all steps.

The volume of the box is $x^{2} \cdot 3 \pi=12 \pi$, so $x^{2}=4$, so $x=2$. Therefore the area of the box is

$$
2 x^{2}+4 x \cdot 3 \pi=8+24 \pi
$$

The volume of the cylinder is $\pi r^{2} \cdot 3=12 \pi$, so $r^{2}=4$, so $r=2$.
3 Therefore the area of the cylinder is

$$
2 \pi r^{2}+2 \pi r \cdot 3=8 \pi+12 \pi=20 \pi
$$

Clearly, the area of the box is much larger.

