Math 123－02
Summer 2024
Dr．Lily Yen
Lisa Lajeunesse

Assignment 2
 Show all your work

Name：
Number：
Signature：
Score： \qquad ／14

Problem 1：Write 8967 as a Kaktovik numeral．

0	1	2	3	4	5	6	7	8	9
γ	\}	V	n	W	－	＜	\checkmark	π	W
10	11	12	13	14	15	16	17	18	19
＞	＞	マ	石	W	5	\％	§	㐫	W

List the place values in base－ 20 to see that $8977=1 \times 8000+2 \times 400+8 \times 20+7$ ．
$1 v \pi \nabla$

Score：／2
Problem 2：Express the Hindu－Arabic numeral 578 in Mayan numeral．

$\stackrel{0}{0}$	1	$\begin{gathered} 2 \\ \bullet \end{gathered}$	$\begin{gathered} 3 \\ \bullet \end{gathered}$	4	5	6	$\begin{array}{r} 7 \\ \bullet \quad . \\ \hline \end{array}$	$\begin{gathered} 8 \\ \bullet \bullet \bullet \\ \hline \end{gathered}$	$\begin{gathered} 9 \\ -\quad . . \end{gathered}$
10	11	$\begin{array}{r} 12 \\ \bullet \quad \\ \hline \end{array}$	$\begin{gathered} 13 \\ \bullet \bullet . \\ \hline \end{gathered}$	$\begin{gathered} 14 \\ \bullet \bullet \bullet \bullet \end{gathered}$	15	$\begin{aligned} & 16 \\ & \bullet \\ & \hline \hline \end{aligned}$	$\begin{array}{r} 17 \\ \bullet \quad . \quad \\ \hline \hline \end{array}$	$\begin{gathered} 18 \\ \bullet \bullet \bullet \\ \hline \end{gathered}$	$\begin{gathered} 19 \\ \bullet \bullet \bullet \bullet \\ \hline \hline \end{gathered}$

$447=1 \times(18 \times 20)+4 \times 20+7$,

Score：／2
Problem 3：Translate the following Babylonian numeral to Hindu－Arabic numeral．

$35 \times 60^{2}+12 \times 60+47=126767$

Score：／2
Problem 4：Translate MCMLXIV to Hindu－Arabic numeral．
$1000+(1000-100)+50+10+(5-1)=1964$

Problem 5: Multiply 458×297 using the galley method.

Problem 6: Compute $2064371_{8}-360517_{8}$ using the two-line algorithm. $\quad \begin{gathered}\text { Score: } \quad 12324035\end{gathered}$ Line up vertically $\begin{array}{r}2023321_{5} \\ -\quad 340413_{5} \\ \hline 1132403_{5}\end{array}$

Score: /2

Problem 7: In the Dungeon Theatre of the Dragons, the seats are arranged 7 in a row to the left of the stage and 9 in a row to the right of the stage. Suppose the extended family of Fire Horse gathers to see a show in the Dungeon Theatre; if they all sit on the left of the stage, there are 3 members of the family without a seat. If they all sit on the right of the stage, there are 4 empty seats. Find the smallest possible number of seats the Dungeon Theatre may have.

Say there are L rows on the left and R rows on the right. Then there are $7 L$ seats on the left and $9 R$ seats on the right. Therefore $7 L+3=9 R-4$, so $7 L+7=9 R$, so
$7(L+1)=9 R$. Thus R is divisible by 7 , so the smallest possible (positive) value for R is 7 . If $R=7$, then $7(L+1)=9 \times 7$, so $L+1=9$, so $L=8$.
In total, $7 L+9 R=7 \times 8+9 \times 7=119$ seats.

