$Math\ 123\text{-}02$ $Summer\ 2024$ Dr. Lily Yen Lisa Lajeunesse

Assignment 2 Show all your work

Name: Number: Signature: Score: /14

Problem 1: Write 8967 as a Kaktovik numeral.

			6 (
			16 *		

List the place values in base-20 to see that $8977 = 1 \times 8000 + 2 \times 400 + 8 \times 20 + 7$.

Problem 2: Express the Hindu-Arabic numeral 578 in Mayan numeral.

8 ••••

Score:

/2

1 2 3 5 6 • • • 10 12 11 13 15 16 17 14 18 19

$$447 = 1 \times (18 \times 20) + 4 \times 20 + 7,$$

Score: /2

Problem 3: Translate the following Babylonian numeral to Hindu-Arabic numeral.

 $35 \times 60^2 + 12 \times 60 + 47 = 126767$

Score: /2

Problem 4: Translate MCMLXIV to Hindu-Arabic numeral.

$$1000 + (1000 - 100) + 50 + 10 + (5 - 1) = 1964$$

Score: /2

Problem	5:	Multiply 458	× 297	using the	gallev	method.
I I Obiciii	Ο.	mainpiy 100	/\ __\	asing one	Same	mounou.

132	678

	4	5	8	X
	1	1	2	9
1	0	5	0	
1/	1 /	1 /	2	\mathbf{O}
$/_{2}$	$\frac{1}{2}$	8	4	9
3	1	2 /	2 /	7
/2	$\frac{1}{4}$	1	8	1
	, / F	7 / 0)	1
/ (6/7	7 / 8	3	
	/	/		

Problem 6: Compute $2064371_8 - 360517_8$ using the two-line algorithm.

$$\begin{array}{c} \text{Score:} & /2 \\ 1132403_5 \end{array}$$

$$\begin{array}{c} \text{Line up vertically} & \begin{array}{c} 2023321_5 \\ - & 340413_5 \\ \hline & 1132403_5 \end{array}$$

Problem 7: In the Dungeon Theatre of the Dragons, the seats are arranged 7 in a row to the left of the stage and 9 in a row to the right of the stage. Suppose the extended family of Fire Horse gathers to see a show in the Dungeon Theatre; if they all sit on the left of the stage, there are 3 members of the family without a seat. If they all sit on the right of the stage, there are 4 empty seats. Find the smallest possible number of seats the Dungeon Theatre may have.

Say there are L rows on the left and R rows on the right. Then there are 7L seats on the left and 9R seats on the right. Therefore 7L+3=9R-4, so 7L+7=9R, so 7(L+1)=9R. Thus R is divisible by 7, so the smallest possible (positive) value for R is 7. If R=7, then $7(L+1)=9\times 7$, so L+1=9, so L=8. In total, $7L+9R=7\times 8+9\times 7=119$ seats.

Score: /2