

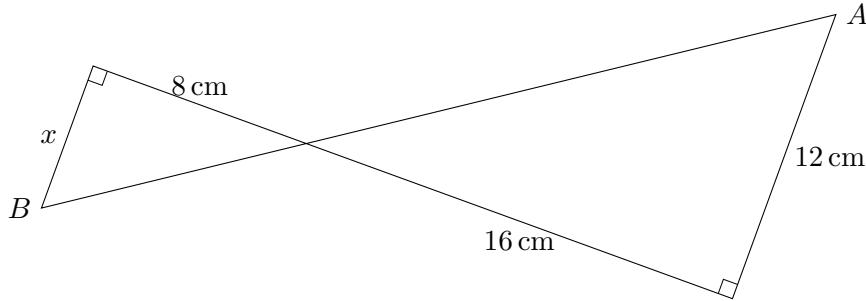
Math 123-02
Spring 2026
Dr. Lily Yen

Assignment 3

Show all your work

Name: _____
Number: _____
Signature: _____
Score: ____/10

Problem 1: Set up a table for convex regular polygons' one interior angle beginning with a triangle, followed by a quadrilateral, a pentagon, and so on. From your table, derive a formula for the measure of one interior angle in a regular n -sided polygon.



Polygon:							$n\text{-gon}$
Angle:	60	90	108	120	$900/7$	$1080/8$	\dots

So one interior angle in an n -sided polygon is $180(n - 2)/n$ degrees.

Score: ____/3

Problem 2: Find $x =$ 6 cm. Also find the length of the line segment $AB =$ 30 cm.

The two inner angles are vertically opposite so equal. Since each triangle has a right angle, the third angles have to be equal, too. Hence the triangles are similar and $\frac{x}{8} = \frac{12}{16}$, so $x = 8 \times \frac{12}{16} = 6$.

Moreover, the hypotenuse of the small triangle is $\sqrt{x^2 + 8^2} = \sqrt{6^2 + 8^2} = 10$, and the hypotenuse of the large triangle is $\sqrt{12^2 + 16^2} = 20$. Therefore $|AB| = 10 \text{ cm} + 20 \text{ cm} = 30 \text{ cm}$.

Score: ____/4

Problem 3: Take a 16 cm rope as a perimeter of a rectangle with whole-number side lengths. List all such rectangles. Find the largest rectangle (in area) with a perimeter of 16 cm.

Width	Length	Perimeter	Area	
1	7	16	7	<input type="text"/>
2	6	16	12	<input type="text"/>
3	5	16	15	<input type="text"/>
4	4	16	16	<input type="text"/> ← largest

Score: ____/3