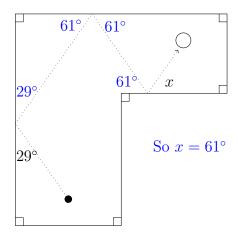
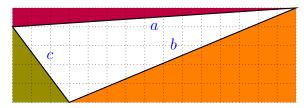
Math 123-01 Fall 2025 Dr. Lily Yen


Assignment 3

Show all your work

Name:		
Number:		
Signature:		
Score:	/10	

Problem 1: Find the measure of angle x to make a hole-in-one at the miniature golf course hole. Use the following two facts to find x:


- a. The angle the ball makes as it hits a flat surface has the same measure as the angle the ball makes as it leaves the same surface.
- b. The interior angle sum of a triangle is 180°.

Starting at 29° using condition (a), alternate interior angles of parallel lines, and complementary angles of a right triangle, we reach $x = 61^{\circ}$.

/3

Problem 2: Below is a 5×15 grid containing a big triangle. Find the area and perimeter of the big triangle. Show your work.

Use the area of the rectangle minus the area of the three corner triangles: $5 \times 15 - (1 \times 15 + 3 \times 4 + 12 \times 5)/2 = 75 - 43.5 = 31.5$ square units. Since the corner triangles are right-angled, $a^2 = 1^2 + 15^2 = 226$, so $a = \sqrt{226}$; $b^2 = 5^2 + 12^2 = 169$, so $b = \sqrt{169} = 13$; and $c^2 = 4^2 + 3^2 = 25$, so $c = \sqrt{25} = 5$. Therefore the perimeter of the given triangle is $a+b+c=\sqrt{226}+13+5=18+\sqrt{226}\approx 33.03$.

Score:

Problem 3: Set up a table for convex polygons' angle sums beginning with a triangle, followed by a quadrilateral, a pentagon, and so on. From your table, derive a formula for the measure of the interior angle sum in a regular n-sided polygon.

Polygon:	\wedge	$\langle \rangle$	\bigcirc				
Polygon:							<i>n</i> -gon
Angle sum:	180	360	540	720	900	1080	 180(n-2)

So the interior angle sum in an *n*-sided polygon is 180(n-2) degrees.

/3