Math 123-01 Fall 2025 Dr. Lily Yen

Assignment 2 Show all your work

Problem 1: Write 9265 as a Kaktovik numeral.

$$9265 = 1 \times 8000 + 3 \times 400 + 3 \times 20 + 5 = 1 \times 20^{3} + 3 \times 20^{2} + 3 \times 20 + 5 = 1 \times 20^{3} + 3 \times 20^{2} + 3$$

Score: /2

Problem 2: Express the Hindu-Arabic numeral 1579 in Mayan numeral.

$$1579 = 4 \times (18 * 20) + 6 \times 20 + 19 =$$

Score: /2

Problem 3: Translate the following Babylonian numeral to Hindu-Arabic numeral.

$$47 \times 60^2 + 22 \times 60 + 39 = 170\,559$$

7

 $774\,072$

Problem 4: Multiply 827×936 using the galley method.

$8 2 7 \Rightarrow$	X
$\begin{bmatrix} 7 & 1 & 6 \\ 2 & 1 & 6 \end{bmatrix}$)
7	
$\begin{bmatrix} 2 \\ 4 \end{bmatrix} \begin{bmatrix} 6 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} \begin{bmatrix} 3 \\ 3 \end{bmatrix}$))
4 1 4	,
4 $\begin{vmatrix} 2 & 8 & 2 & 2 \end{vmatrix}$,
/0/7/2	

Score: /2

/2

Problem 5: Fire Horse likes to play with her model dragons. When she lines them up 5 in a row, she has 4 left over. When she lines them up 7 in a row, she finds her last row short of 2 dragons to complete a row. Suppose her collection of dragons contains at least 30, find the smallest possible number of dragons in her collection.

Say she has n rows of five. Then the total number of dragons is 5n + 4. Similarly, if she has m rows of seven, the total is 7m - 2. Therefore 5n + 4 = 7m - 2, so 5n + 6 = 7m. We find also the least common multiple of 5 and 7 is 35. We will list both modular classes until the first match.

5n + 4	4	9	14	19	
7m - 2	5	12	19	26	
Matching	19	54	89	124	