Name：
Math 123
Fall 2023
Dr．Lily Yen

Midterm I
 Show all your work

Problem 1：Anjali used toothpicks to form a sequence of fish．
a．Draw the fourth fish in the sequence．
b．Count the total number of toothpicks in the fourth fish．
c．Establish a table of pattern to obtain a formula involving n to express the total number of toothpicks in the nth fish．

Fish	1	2	3	4	\ldots	n
Toothpicks	6	16	30	48	\ldots	$2 n(n+1)+2 n$

Score：／4
Problem 2：The sum of Katharina＇s parents＇ages is 118．Given that her father is two years older than her mother，find their ages．

Let x be Katharina＇s mother＇s age and y be her father＇s age．The sum is $x+y=118$ ，and the age difference is $x+2=y$ ．Therefore，when y in the first equation is replaced by $x+2$ ， one obtains $x+x+2=118$ ，or $x=58$ ，and $y=60$ ．
Thus，Katharina＇s father is 60 and her mother is 58 years old．
Other approaches are，for example，trial and error，or a table of patterns，or starting with $118 \div 2=59$ ，then adjust one up（for dad）and one down（for mom）．Score：$\quad / 2$
Problem 3：Lena－Anna is a Michelin－Starred restaurant with tables which seat 4 or 2．Sup－ pose there are 5 more tables which are 2 －seaters than 4 －seaters．At capacity，the restaurant serves 40 people．How many tables of each type does Lena－Anna have？

Let x be the number of 4 －seater tables，then $2(5+x)+4 x=40$ ，or $6 x=30$ ．So，$x=5$ ． There are 5 tables seating 4 people each，and 10 tables seating 2 people each．

Score：$\quad / 2$
Problem 4：Mei rolls a six－sided die，an eight－sided die，and a twenty－sided die simul－ taneously．How many possible outcomes are there？Use a tree diagram to support your answer．

Mei can expect $6 \times 8 \times 20=960$ outcomes．

Problem 5: Fire Horse is looking at the following from different numeration systems. Convert each to a Hindu-Arabic numeral, and perform indicated operations.

b. $\bar{u}<\bar{\nabla}$
c. MCDLXIX
d. Perform the subtraction $1010011_{2}-11011_{2}$ in binary, then convert each binary including the answer to base-10 to check.
e. Convert $A 3 B_{16}$ to an octal number.

a. $35 \times 60^{2}+12 \times 60+47=126767$.
b. $18 \times 20^{2}+6 \times 20+12=7332$.
c. $1000+(500-100)+50+10+(10-1)=1469$.
d. Convert first binary to $64+16+2+1=83$. Convert the second binary to $16+8+2+1=27$. Since $83-27=56$, we check that the binary answer is $32+16+8=56$.

1010011_{2}
$-\quad 11011_{2}$
111000_{2}

e. $10 \times 256+3 \times 16+11=2619$, using successive division by 8 , one obtains $5073{ }_{8}$.
f. $2 \times 18 \times 20+12 \times 20+13=973$.

Problem 6: Multiply 468×975 using the galley method.

Score: /3
Problem 7: Find three different values for x satisfying $x+3 \equiv 5 \bmod 13$.
List first the multiples of 13 yields: $0,13,26,39, \ldots$
Then list the numbers with remainder 5 when divided by 13: 5, 18, 31, 44, ...
Since $x+3 \equiv 5 \bmod 13, x+3=5$, or $x+3=18$, or $x+3=31$; thus, $x=2$, or 15 , or 28 .

Problem 8: A group of students are attending a seminar at the university auditorium. There are chairs arranged to the left and to the right of the podium. Chairs on the left are arranged 7 in a row, and chairs on the right are arranged 10 in a row. If all students sit on the left, from the first row on, without any empty seat, there are exactly 5 students in the last row before empty rows. If all students sit on the right, again filling all seats from the first on, there are exactly 2 students in the last row before empty rows. Find the second smallest number of students that attend the seminar.

If the students siting on the left take up a full rows, then there are $7 a+5$ students in attendance. If the same students fill b full rows on the right, their number is $10 b+2$. Therefore $7 a+5=10 b+2$, so $7 a+3=10 b$. The integer solutions to this equation are

$$
\begin{array}{rl}
a & = \\
& 1 \\
& 11 \\
& 21 \\
\ldots & \ldots \\
b & =1 \\
8 & 15
\end{array} \ldots
$$

