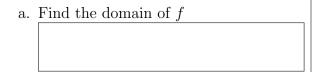

Math 116 Summer 2012 Dr. Lily Yen


Test 1

Show all your work

No Calculator allowed in this part.

Problem 1: Use the graph of y = f(x) below to answer the questions.

b. $\lim_{x\to 5} f(x) =$		
---------------------------	--	--

c.
$$\lim_{x\to 2} f(x) =$$

Score:	/42	

Name:

d.
$$\lim_{x \to -4^+} f(x) =$$

e.
$$\lim_{x \to -7^-} f(x) =$$

f.
$$\lim_{x \to \frac{1}{2}} f(x) =$$

g.	State all values of x in	(-9,8) where f
	is discontinuous.	

h.	State all values of x in	(-9,8) where f
	does not have a limit.	

i.	List the intervals (as large as possible
	where f is continuous.

Score: /9

Problem 2: Use a graph to determine $\lim_{x\to 4^-} \ln(4-x)$.

Score: /2

Problem 3: Evaluate the following limits analytically. Provide graphs of trigonometric functions when appropriate.

a.
$$\lim_{x \to 3^{-}} \frac{2x^2 - 7x + 3}{|x^2 + x - 12|}$$

b.
$$\lim_{x \to (\frac{\pi}{2})^+} \tan(x)$$

c.
$$\lim_{x \to \pi^+} \frac{1 - x}{\sin(x)}$$

d.
$$\lim_{h \to 0} \frac{(h-5)^2 - 25}{h}$$

e.
$$\lim_{x \to \infty} \frac{6x^5 - 3x^3 + 7x}{4x^2 - 8x + 101}$$

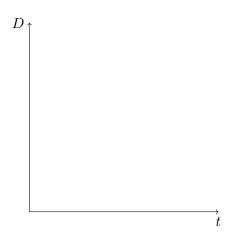
Math 116 $Summer\ 2012$ Dr. Lily Yen

Test 1

Show all your work

Name:

Calculators allowed from here on.


Problem 4: The number of people infected due to an influenza epidemic can be modelled

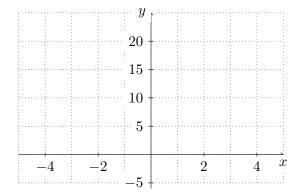
$$D(t) = \frac{93\,700}{1 + 5095.9634e^{-0.156739t}},$$

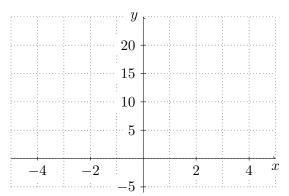
where D(t) is the number of people infected t days after the model began describing the situation.

a. Use a table to estimate $\lim_{t\to\infty} D(t)$. What does this limit represent?

f(x)	x	f(x)
	f(x)	

b. Based on your answers to Part a, what do you expect the value of


$$\lim_{t\to\infty}\frac{A}{1+Be^{-kt}}\quad\text{for constants }A,B,k>0$$


to be? Show analytically that your guess is correct.

Problem 5: Consider the function f given by

$$f(x) = \begin{cases} x^2, & x \le c \\ 6+x, & x > c \end{cases}$$

Use the definition of continuity to determine all values of c for which f is continuous on its entire domain. Draw your graphs.

Score: /4

 $\bf Problem~6:$ State the Squeeze Theorem. Can you use it to determine

$$\lim_{x \to 0} x^2 \cos(\frac{1}{x^2}) \quad ?$$

If so, find the limit. If not, provide reasons.

Problem 7: State the Intermediate Value Theorem. Consider $f(x) = \frac{1}{x}$. Compute f(2) and f(-2) and discuss whether you can find a value for x such that f(x) = 0. Use the theorem you just stated to support your argument.

Page 5

Math 116