Math 108-01 Summer 2025 Dr. Lily Yen

Quiz 5 Show all your work

Name:		
Number:		
Signature:		
Score:	/10	

Problem 1: Use linear approximation to estimate $\sqrt[4]{15.99}$ to 4 decimal places.

If
$$f(x) = \sqrt[4]{x}$$
, and $a = 16$, then $f'(x) = \frac{1}{4}x^{-3/4}$, $f(a) = \sqrt[4]{16} = 2$, and $f'(a) = \frac{1}{4 \times (16)^{(3/4)}} = \frac{1}{4 \times 2^3} = \frac{1}{32}$, so

$$\sqrt[4]{15.99} = f(15.99) \approx f(a) + f'(a)(15.99 - a) = 2 + \frac{1}{32}(-0.01) \approx 1.9997$$

Score: /3

Problem 2: Determine the intervals where the given function $f(x) = \sin(x) + \sin^3(x)$ is increasing; and find all local and global extrema (both coordinates) in the interval $[-\pi, \pi]$. Give 4 decimal places for approximations. Hint: Drawing f is helpful.

$$f'(x) = \cos(x) + 3\sin^2(x)\cos(x) = ((1+3\sin^2(x))\cos(x),$$

and since $1+3\sin^2(x)\geq 1$ (so never zero), f'(x)=0 when $\cos(x)=0$, so at $\frac{\pi}{2}+n\pi$, $n\in\mathbb{Z}$. Moreover, the sign of f'(x) is the same as the sign of $\cos(x)$. Checking the sign of f' around the critical points, one determines whether the point is a local max or min. Now $f(\frac{\pi}{2}+2n\pi)=\sin(\frac{\pi}{2})+\sin^3(\frac{\pi}{2})=1+1^3=2$, and $f(-\frac{\pi}{2}+2n\pi)=\sin(-\frac{\pi}{2})+\sin^3(-\frac{\pi}{2})=-1+(-1)^3=-2$, so the local maxima are $(\frac{\pi}{2}+2n\pi,2)$ and the local minima are $(-\frac{\pi}{2}+2n\pi,-2)$. Within the domain, $[-\pi,\pi]$, they are also global extrema.

Score: /3

Problem 3: A tank shaped like an upside-down square $(4 \text{ m} \times 4 \text{ m})$ pyramid with height 12 m is leaking water at the rate of $0.2 \text{ m}^3/\text{s}$. How fast does the height decrease when the water is 2 m deep? Give 4 decimal places.

Let x be the side length of the square at the top of the water, and let h be the depth of the water. By similar triangles, $\frac{x}{4} = \frac{h}{12}$, so x = h/6. The volume of the water is $V = \frac{1}{3}x^2h = \frac{1}{3}(h/3)^2h = h^3/27$. Therefore

$$\frac{dV}{dt} = \frac{h^2}{9} \frac{dh}{dt}.$$

When $h = 2 \,\mathrm{m}$,

$$\frac{dh}{dt} = \frac{dV/dt}{h^2/9} = \frac{-0.2 \,\mathrm{m}^3/\mathrm{s}}{(2 \,\mathrm{m})^2/9} = -0.45 \,\mathrm{m/s}.$$