Name:
Math 108-01
Summer 2024
Dr. Lily Yen

Midterm One

Show all your work

Number:
Signature:
Score: \qquad

No Calculator allowed in this part.

Problem 1: Determine the following limits analytically showing all steps. Use the symbols DIE, ∞, and $-\infty$ where appropriate.
a. $\lim _{x \rightarrow 6^{+}} \frac{x^{2}-5 x-6}{|6-x|}=$

If $x>6$, then $|6-x|=-(6-x)=x-6$, so

$$
\lim _{x \rightarrow 6^{+}} \frac{x^{2}-5 x-6}{|6-x|}=\lim _{x \rightarrow 6^{+}} \frac{(x-6)(x+1)}{x-6}=\lim _{x \rightarrow 6^{+}} x+1=7
$$

Score: $\quad / 2$
b. $\lim _{x \rightarrow 3} \frac{x-7}{(x-3)^{2}}=$

$\lim _{x \rightarrow 3} x-7=-4$ and $\lim _{x \rightarrow 3}(x-3)^{2}=0$ (but positive), so

$$
\lim _{x \rightarrow 3} \frac{x-7}{(x-3)^{2}}=-\infty
$$

Score: /2

Problem 2: Answer the following using derivative rules. Do not simplify.
a. Find $h^{\prime}(x)$ where $h(x)=\sin \left(\frac{1}{x}-\log _{3}\left(x^{2}\right)\right)$

$$
\begin{aligned}
h^{\prime}(x)=\cos \left(\frac{1}{x}-\log _{3}\left(x^{2}\right)\right)\left(\frac{-1}{x^{2}}-\frac{1}{x^{2} \ln (3)}\right. & 2 x) \\
& =-\cos \left(\frac{1}{x}-\log _{3}\left(x^{2}\right)\right)\left(\frac{1}{x^{2}}+\frac{2}{x \ln (3)}\right)
\end{aligned}
$$

Score: /3
b. Find $d(g(x)) / d x$ where

$$
\begin{gathered}
g(x)=\frac{\tan ^{-1}\left(e^{6 x}\right)}{\left(\pi+2 x^{3}-5 \sqrt[4]{x}\right)} \\
g^{\prime}(x)=\frac{\frac{1}{1+e^{12 x}} e^{6 x} 6\left(\pi+2 x^{3}-5 \sqrt[4]{x}\right)-\tan ^{-1}\left(e^{6 x}\right)\left(6 x^{2}-\frac{5}{4} x^{-3 / 4}\right)}{\left(\pi+2 x^{3}-5 \sqrt[4]{x}\right)^{2}}
\end{gathered}
$$

Show all your work

Name:
Number:

Dr. Lily Yen

Calculators allowed from here on.

Problem 3: The graph of $y=f(x)$ is shown. Use the graph to answer the questions. Use the symbols DNE, ∞, and $-\infty$ where appropriate.

a. Express in as few intervals as possible where f is continuous in $(-\infty, 6)$.
$(-\infty,-2) \cup(-2,3) \cup(3,6)$
b. List the x values where f is continuous but not differentiable.
$x=0$
c. $\lim _{x \rightarrow 2^{-}} f(x)=$

$$
-5 / 3
$$

d. $\lim _{x \rightarrow 3^{+}} f(x)=$ 3

2
f. $\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x}=$

DNE
g. $\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}=-7 / 3$
h. Estimate $f^{\prime}(-3)$ by drawing a tangent line at the point in question and ap-
proximating its slope.

i. In the same grid above, graph $y=$ $f^{\prime}(x)$ for the interval $(-2,6)$ where you see a piece-wise linear function and a parabola.

Score: $\quad / 10$

Problem 4: Use the limit definition of continuity to find a value c that makes the piece-wise defined function continuous everywhere. Draw your resulting function to check. From the graph, is the function differentiable at $x=-2$?

$$
f(x)= \begin{cases}x^{3}-1, & x \leq-2 \\ 3 x+c, & x>-2\end{cases}
$$

Polynomials and roots are continuous. Compositions of continuous functions are continuous. Therefore each piece of f is continuous.
Note that $\lim _{x \rightarrow-2^{-}} f(x)=\lim _{x \rightarrow-2^{-}} x^{3}-1=-9$, that
$\lim _{x \rightarrow-2^{+}} f(x)=\lim _{x \rightarrow-2^{+}} 3 x+c=-6+c$, and that $f(-2)=-9$. Therefore f is continuous at $x=-2$ (and hence everywhere) if $-6+c=-9$, so $c=-3$.

The graph looks like it has a cusp at $(-2,0)$, so f is likely NOT DIFFERENTIABLE and further analysis bears this out. Score: /4

Problem 5: Use correct notation, show all steps and leave your answer in simplified form.
a. Use the limit definition of the derivative to find the derivative of $f(x)=\frac{1}{x+3}$.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{x+h+3}-\frac{1}{x+3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{x+3}{(x+h+3)(x+3)}-\frac{x+h+3}{(x+h+3)(x+3)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{-h}{(x+h+3)(x+3)}}{h}=\lim _{h \rightarrow 0} \frac{-1}{(x+h+3)(x+3)} \\
& =\frac{-1}{(x+3)^{2}}
\end{aligned}
$$

b. Find an equation of the tangent line to f at $x=2$.

Since $f(2)=\frac{1}{5}$ and $f^{\prime}(2)=-\frac{1}{25}$, the tangent line is

$$
y-\frac{1}{5}=-\frac{1}{25}(x-2) \quad \text { or } \quad y=-\frac{1}{25} x+\frac{7}{25} \quad \text { or } \quad x+25 y-7=0
$$

Score: /5
Problem 6: Given the following implicitly defined function:

$$
y^{2}+2 x^{2}+2 y-2 x y=30
$$

a. Solve for $\frac{d y}{d x}$.

Here $2 y y^{\prime}+4 x+2 y^{\prime}-2\left(y+x y^{\prime}\right)=0$, so $2 y y^{\prime}+4 x+2 y^{\prime}-2 y-2 x y^{\prime}=0$, so $(2 y+2-2 x) y^{\prime}=2 y-4 x$, so

$$
\frac{d y}{d x}=\frac{2 y-4 x}{2 y+2-2 x}=\frac{2 x-y}{x-y-1}
$$

b. Find all point(s) on the curve with a tangent slope of 2 .

If $\frac{2 x-y}{x-y-1}=2$, then $2 x-y=2(x-y-1)=2 x-2 y-2$, so $y=-2$ is the only solution. If $y=-2$ and $y^{2}+2 x^{2}+2 y-2 x y=30$, then $2 x^{2}+4 x=30$, so $x^{2}+2 x-15=0$, so $(x-3)(x+5)=0$, so $x=3$ or $x=-5$.
Therefore the desired points of tangency are $(3,-2)$ and $(-5,-2)$.

Problem 7: The spread of an avian flu virus is modelled by $V(t)$ where $V(t)$ is the number of people (in hundreds) with the virus, and t is the number of weeks since the first case was observed at Capilano University's main campus. Carefully interpret the following mathematical statements regarding the virus.
a. $V^{\prime}(3)=0.4$

Three weeks after the initial case, the number of infected people increases at 40 persons per week.
b. $\frac{\Delta V}{\Delta t}=0.3$ for $t=0$ and $t=5$.

During the first five weeks after the initial case, the number of infected people grew at an average rate of 30 people per week.

Score: /2
Problem 8: Capilano University East Indian Truck food company has found the following cost/production information:

Lunch boxes produced:	0	5	15	35	45	50	60
Total cost (\$) of production:	230	270	325	450	500	535	590

a. Sketch the scatterplot and find the linear model.

Score: /4
b. Find the marginal cost function from the model.
$y^{\prime}=5.947$ dollars per lunch box

Score: /2
c. With your model, approximate the cost of producing the 16 th lunch box.
5.95 dollars for the 16th lunch box.

Score: /1
d. Find the average cost of producing x lunch boxes.
$x \cdot \Delta y / \Delta x=5.95 x$ dollars for x boxes

Score: $/ 2$

