| Ma  | $^{	ext{th}}$ | 10 | 8-01 |   |
|-----|---------------|----|------|---|
| Sur | nm            | er | 2024 | l |
| Dr. | Li            | lv | Yen  |   |

## Midterm One Show all your work

| Name:      |     |  |
|------------|-----|--|
| Number:    |     |  |
| Signature: |     |  |
| Score:     | /45 |  |

## No Calculator allowed in this part.

**Problem 1**: Determine the following limits analytically showing all steps. Use the symbols DNE,  $\infty$ , and  $-\infty$  where appropriate.

a. 
$$\lim_{x \to 6^+} \frac{x^2 - 5x - 6}{|6 - x|} =$$



b. 
$$\lim_{x \to 3} \frac{x - 7}{(x - 3)^2} =$$



Score: /2

Problem 2: Answer the following using derivative rules. Do NOT simplify.

a. Find 
$$h'(x)$$
 where  $h(x) = \sin\left(\frac{1}{x} - \log_3(x^2)\right)$ 

Score: /3

b. Find 
$$d(g(x))/dx$$
 where

$$g(x) = \frac{\tan^{-1}(e^{6x})}{(\pi + 2x^3 - 5\sqrt[4]{x})}$$

Score: /3

Math 108-01 Summer 2024 Dr. Lily Yen

## Midterm One

Show all your work

| Name:   |  |
|---------|--|
| Number: |  |

Calculators allowed from here on.

**Problem 3**: The graph of y = f(x) is shown. Use the graph to answer the questions. Use the symbols DNE,  $\infty$ , and  $-\infty$  where appropriate.



- a. Express in as few intervals as possible where f is continuous in  $(-\infty, 6)$ .
- b. List the x values where f is continuous but not differentiable.
- c.  $\lim_{x \to 2^{-}} f(x) =$
- d.  $\lim_{x \to 3^+} f(x) =$
- e.  $\lim_{x \to -\infty} f(x) =$

- f.  $\lim_{x \to 0} \frac{f(x) f(0)}{x} =$
- g.  $\lim_{h \to 0} \frac{f(1+h) f(1)}{h} =$
- h. Estimate f'(-3) by drawing a tangent line at the point in question and approximating its slope.
- i. In the same grid above, graph y = f'(x) for the interval (-2,6) where you see a piece-wise linear function and a parabola.

Score: /10

**Problem 4**: Use the limit definition of continuity to find a value c that makes the piece-wise defined function continuous everywhere. Draw your resulting function to check. From the graph, is the function differentiable at x = -2?

$$f(x) = \begin{cases} x^3 - 1, & x \le -2\\ 3x + c, & x > -2 \end{cases}$$

Score: /4

**Problem 5**: Use correct notation, show all steps and leave your answer in simplified form.

a. Use the limit definition of the derivative to find the derivative of  $f(x) = \frac{1}{x+3}$ .

b. Find an equation of the tangent line to f at x=2.

Score: /5

**Problem 6**: Given the following implicitly defined function:

$$y^2 + 2x^2 + 2y - 2xy = 30$$

a. Solve for  $\frac{dy}{dx}$ .

b. Find all point(s) on the curve with a tangent slope of 2.

Score: /5

Page 3 Math 108-01

**Problem 7**: The spread of an avian flu virus is modelled by V(t) where V(t) is the number of people (in hundreds) with the virus, and t is the number of weeks since the first case was observed at Capilano University's main campus. Carefully interpret the following mathematical statements regarding the virus.

a. 
$$V'(3) = 0.4$$

b. 
$$\frac{\Delta V}{\Delta t} = 0.3$$
 for  $t = 0$  and  $t = 5$ .

Score: /2

**Problem 8**: Capilano University East Indian Truck food company has found the following cost/production information:

| Lunch boxes produced:          | 0   | 5   | 15  | 35  | 45  | 50  | 60  |
|--------------------------------|-----|-----|-----|-----|-----|-----|-----|
| Total cost (\$) of production: | 230 | 270 | 325 | 450 | 500 | 535 | 590 |

a. Sketch the scatterplot and find the linear model.

Score: /4

b. Find the marginal cost function from the model.

Score: /2

c. With your model, approximate the cost of producing the 16th lunch box.

Score: /1

d. Find the average cost of producing x lunch boxes.

Score: /2

Page 4 Math 108-01