Name:
Math 108-01
Summer 2024
Dr. Lily Yen

Midterm 1

Show all your work
Number:

Signature:
Score: ___/45

No Calculator allowed in this part.

Problem 1: Determine the following limits analytically showing all steps. Use the symbols DNE, ∞, and $-\infty$ where appropriate.
a. $\lim _{x \rightarrow 2} \frac{x-5}{(x-2)^{2}}=$ \square
Since $\lim _{x \rightarrow 2} x-5=-3$ and $\lim _{x \rightarrow 2}(x-2)^{2}=0$ (while staying positive),

$$
\lim _{x \rightarrow 2} \frac{x-5}{(x-2)^{2}}=-\infty
$$

Score: /2
b. $\lim _{x \rightarrow 7^{+}} \frac{x^{2}-6 x-7}{|7-x|}=$

If $x>7$, then $|7-x|=-(7-x)=x-7$, so

$$
\lim _{x \rightarrow 7^{+}} \frac{x^{2}-6 x-7}{|7-x|}=\lim _{x \rightarrow 7^{+}} \frac{(x-7)(x+1)}{x-7}=\lim _{x \rightarrow 7^{+}} x+1=8
$$

Score: /2

Problem 2: Answer the following using derivative rules. Do not simplify.
a. Find $h^{\prime}(x)$ where $h(x)=\log _{3}\left(\frac{1}{x}-\sin \left(x^{2}\right)\right)$

$$
h^{\prime}(x)=\frac{1}{\left(\frac{1}{x}-\sin \left(x^{2}\right)\right) \ln (3)}\left(\frac{-1}{x^{2}}-\cos \left(x^{2}\right) 2 x\right)
$$

Score: /3
b. Find $d(g(x)) / d x$ where

$$
\begin{gathered}
g(x)=\frac{\cos ^{-1}\left(e^{2 x}\right)}{\left(\pi+3 x^{4}-7 \sqrt[3]{x}\right)} \\
g^{\prime}(x)=\frac{\frac{-1}{\sqrt{1-e^{4 x}}} e^{2 x} 2\left(\pi+3 x^{4}-7 \sqrt[3]{x}\right)-\cos ^{-1}\left(e^{2 x}\right)\left(12 x^{3}-\frac{7}{3} x^{-2 / 3}\right)}{\left(\pi+3 x^{4}-7 \sqrt[3]{x}\right)^{2}}
\end{gathered}
$$

Dr. Lily Yen
Show all your work
Number:

Calculators allowed from here on.

Problem 3: The graph of $y=f(x)$ is shown. Use the graph to answer the questions. Use the symbols DNE, ∞, and $-\infty$ where appropriate.

a. Express in as few intervals as possible where f is continuous in $[-6, \infty)$.
$[-6,-2) \cup(-2,2) \cup(2, \infty)$
b. List the x values where f is continuous but not differentiable.
$x=0$
c. $\lim _{x \rightarrow 2^{+}} f(x)=$

d. $\lim _{x \rightarrow \infty} f(x)=$
e. $\lim _{x \rightarrow-2^{-}} f(x)=$

f. $\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=$

DNE
g. $\lim _{x \rightarrow-1} \frac{f(x)-f(-1)}{x+1}=-3 / 2$
h. Estimate $f^{\prime}(4)$ by drawing a tangent line at the point in question and approximating its slope.

$$
-0.68
$$

i. In the same grid above, graph $y=f^{\prime}(x)$ for the interval $[-6,2)$ where you see a parabola and a piece-wise linear function.

Score: $\quad / 10$

Problem 4: Use the limit definition of continuity to find a value c that makes the piece-wise defined function continuous everywhere. Draw your resulting function to check. From the graph, is the function differentiable at $x=-1$?

$$
g(x)= \begin{cases}5-x^{3}, & x<-1 \\ 2 x+c, & x \geq-1\end{cases}
$$

Polynomials and roots are continuous. Compositions of continuous functions are continuous. Therefore each piece of g is continuous.
Note that $\lim _{x \rightarrow-1^{-}} g(x)=\lim _{x \rightarrow-1^{-}} 5-x^{3}=6$, that
$\lim _{x \rightarrow-1^{+}} g(x)=\lim _{x \rightarrow-1^{+}} 2 x+c=-2+c$, and that $f(-1)=-2+c$. Therefore f is continuous at $x=-1$ (and hence everywhere) if $-2+c=6$, so $c=8$.

The graph looks like it has a cusp at $(-1,6)$, so f is likely NOT DIFFERENTIABLE and further analysis bears this out.

Problem 5: Use correct notation, show all steps and leave your answer in simplified form.
a. Use the limit definition of the derivative to find the derivative of $f(x)=\frac{1}{x+2}$.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{x+h+2}-\frac{1}{x+2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{x+2}{(x+h+2)(x+2)}-\frac{x+h+2}{(x+h+2)(x+2)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{-h}{(x+h+2)(x+2)}}{h}=\lim _{h \rightarrow 0} \frac{-1}{(x+h+2)(x+2)} \\
& =\frac{-1}{(x+2)^{2}}
\end{aligned}
$$

b. Find an equation of the tangent line to f at $x=3$.

Since $f(3)=\frac{1}{5}$ and $f^{\prime}(3)=\frac{-1}{5^{2}}=-\frac{1}{25}$, the tangent line is

$$
y-\frac{1}{5}=-\frac{1}{25}(x-3) \quad \text { or } \quad y=-\frac{1}{25} x+\frac{8}{25} \quad \text { or } \quad x+25 y-8=0
$$

Score: /5
Problem 6: Given the following implicitly defined function:

$$
x^{2}+2 y^{2}+2 y-2 x y=80
$$

a. Solve for $\frac{d y}{d x}$.

Here $2 x+4 y y^{\prime}+2 y^{\prime}-2\left(y+x y^{\prime}\right)=0$, so $2 x+4 y y^{\prime}+2 y^{\prime}-2 y-2 x y^{\prime}=0$, so $4 y y^{\prime}+2 y^{\prime}-2 x y^{\prime}=2 y-2 x$, so $(4 y+2-2 x) y^{\prime}=2 y-2 x$, so

$$
\frac{d y}{d x}=\frac{2 y-2 x}{4 y+2-2 x}=\frac{y-x}{2 y+1-x}
$$

b. Find all point(s) on the curve with a tangent slope of 1.

If $\frac{y-x}{2 y+1-x}=1$, then $y-x=2 y+1-x$, so $y=-1$ is the only solution.
If $y=-1$ and $x^{2}+2 y^{2}+2 y-2 x y=80$, then $x^{2}+2 x=80$, so $x^{2}+2 x-80=0$, so $(x-8)(x+10)=0$, so $x=8$ or $x=-10$.
Therefore the desired points of tangency are $(8,-1)$ and $(-10,-1)$.

Score: /5

Problem 7: The spread of an avian flu virus is modelled by $V(t)$ where $V(t)$ is the number of people (in hundreds) with the virus, and t is the number of weeks since the first case was observed at Capilano University's main campus. Carefully interpret the following mathematical statements regarding the virus.
a. $\frac{\Delta V}{\Delta t}=0.2$ for $t=0$ and $t=4$.

Four weeks after the first case, the number of infected people has grown at an average rate of 20 people per week.
b. $V^{\prime}(4)=0.5$

Four weeks after the first case, the number of infected people is growing at a rate of 50 people per week.
The two statements do not contradict each other since one would expect the rate to be small in the beginning.

Score: $\quad / 2$
Problem 8: Capilano University East Indian Truck food company has found the following cost/production information:

Lunch boxes produced:	0	10	15	25	45	55	65
Total cost (\$) of production:	230	295	325	390	500	555	610

a. Sketch the scatterplot and find the linear model.

Score: /4
b. Find the marginal cost function from the model.
$y^{\prime}=\$ 5.806$ per box.

Score: /2
c. With your model, approximate the cost of producing the 14th lunch box.
$\$ 5.81$ for producing the 14th lunch box.

Score: /1
d. Find the average cost of producing x lunch boxes.
$x \cdot \Delta y / \Delta x=5.806 x$ dollars .

Score: /2

