Math 108-01
Summer 2024
Dr. Lily Yen

Quiz Five
Show all your work

Number:
Signature:
Score:
__/ 10

Problem 1: Use the limit definition of continuity to find a value c that makes the piece-wise defined function continuous everywhere. Draw your resulting function to check. From the graph, is the function differentiable at $x=2$?

$$
f(x)= \begin{cases}x^{2}-1, & x \leq 2 \\ \sqrt{x-c}, & x>2\end{cases}
$$

Polynomials and roots are continuous. Compositions of continuous functions are continuous. Therefore each piece of f is continuous.
Note that $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} x^{2}-1=3$, that
$\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}} \sqrt{x-c}=\sqrt{2-c}$, and that $f(2)=3$. Therefore f is continuous at $x=2$ (and hence everywhere) if $\sqrt{2-c}=3$, so $2-c=9$, so $c=-7$.

The graph looks like it has a cusp at $(2,3)$, so f is likely NOT DIFFERENTIABLE and further analysis bears this out.

Score: /4
Problem 2: Answer the following using derivative rules. Do not simplify.
a. Find $g^{\prime}(x)$ where $g(x)=\left(4 x^{3}+\frac{1}{x^{3}}-50\right)\left(x^{2}-2 \sqrt{x}+e\right)$

$$
\begin{aligned}
g^{\prime}(x)=\left(12 x^{2}-\frac{3}{x^{4}}\right)\left(x^{2}\right. & -2 \sqrt{x}+e)+\left(4 x^{3}+\frac{1}{x^{3}}-50\right)\left(2 x-\frac{1}{\sqrt{x}}\right) \\
& =20 x^{4}-28 x^{5 / 2}+12 e x^{2}-100 x+\frac{50}{\sqrt{x}}-\frac{1}{x^{2}}+\frac{5}{x^{7 / 2}}=\frac{3 e}{x^{4}}
\end{aligned}
$$

Score: /3
b. Find $d(f(x)) / d x$ where

$$
\begin{gathered}
f(x)=\frac{23+\sqrt{x}-x^{5}}{\left(1-\frac{2}{x^{3}}\right)} \\
f^{\prime}(x)=\frac{\left(\frac{1}{2 \sqrt{x}}-5 x^{4}\right)\left(1-\frac{2}{x^{3}}\right)-\left(23+\sqrt{x}-x^{5}\right)\left(\frac{6}{x^{4}}\right)}{\left(1-\frac{2}{x^{3}}\right)^{2}}
\end{gathered}
$$

