Math 108-01
Summer 2024
Dr. Lily Yen

Quiz 5

Show all your work

Number:
Signature:
Score:
_/10

Problem 1: Use the limit definition of continuity to find a value c that makes the piece-wise defined function continuous everywhere. Draw your resulting function to check. From the graph, is the function differentiable at $x=2$?

$$
f(x)= \begin{cases}\sqrt{x-2}, & x>2 \\ x^{2}-c, & x \leq 2\end{cases}
$$

Polynomials and roots are continuous. Compositions of continuous functions are continuous. Therefore each piece of f is continuous.
Note that $\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}} \sqrt{x=2}=0$, that $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} x^{2}-c=4-c$, and that $f(2)=4-c$. Therefore f is continuous at $x=2$ (and hence everywhere) if $4-c=0$, so $c=4$.

The graph looks like it has a cusp at $(2,0)$, so f is likely NOT DIFFERENTIABLE and further analysis bears this out.

Problem 2: Answer the following using derivative rules. Do not simplify.
a. Find $g^{\prime}(x)$ where $g(x)=\left(5 x^{2}-3 \sqrt{x}+\pi\right)\left(3 x^{4}+\frac{1}{x^{2}}-100\right)$

$$
\begin{aligned}
g^{\prime}(x)=\left(10 x-\frac{3}{2 \sqrt{x}}\right)\left(3 x^{4}\right. & \left.+\frac{1}{x^{2}}-100\right)+\left(5 x^{2}-3 \sqrt{x}+\pi\right)\left(12 x^{3}-\frac{2}{x^{3}}\right) \\
& =90 x^{4}-\frac{81}{2} x^{7 / 2}+12 \pi x^{3}-1000 x+\frac{150}{\sqrt{x}}+\frac{9}{2 x^{5 / 2}}-\frac{2 \pi}{x^{3}}
\end{aligned}
$$

Score: /3
b. Find $d(f(x)) / d x$ where

$$
\begin{gathered}
f(x)=\frac{2-\frac{3}{x^{4}}}{523+\sqrt{x}-x^{6}} \\
f^{\prime}(x)=\frac{\frac{12}{x^{5}}\left(523+\sqrt{x}-x^{6}\right)-\left(2-\frac{3}{x^{4}}\right)\left(\frac{2}{2 \sqrt{x}}-6 x^{5}\right)}{\left(523+\sqrt{x}-x^{6}\right)^{2}}
\end{gathered}
$$

