Name:

Math 108
Spring 2024
Dr. Lily Yen

Quiz Five
Show all your work

Number:
Signature:
Score: __/ 10

Problem 1: Let the derivative of f be defined by $f^{\prime}(x)=(2 x-3) \overline{(x+1)^{2}}$.
a. Draw f^{\prime}.
b. List all intervals where the original function f is DECREASING.
c. List all inflection points of f.
d. List all intervals where the graph of f is concave UP.

f is decreasing where $f^{\prime}(x)<0$ so on $\left(-\infty, \frac{3}{2}\right)$. And, yes, f is also decreasing at $x=-1$.
f has an inflection point where $f^{\prime \prime}(x)=0$. Since $f^{\prime \prime}(x)=$ $2(x+1)^{2}+(2 x-3) 2(x+1)=2((x+1)+(2 x-3))(x+1)=$ $2(3 x-2)(x+1)$, the inflection points are at $x=\frac{2}{3}$ and at $x=-1$.
f is concave up where $f^{\prime \prime}(x)>0$ so on $(-\infty,-1) \cup\left(\frac{2}{3}, \infty\right)$.

Score: /5
Problem 2: Draw the following function including all important features like local extrema, inflection point(s), and asymptotic behaviour. Remember to take appropriate limits to support your claim.

$$
y=\frac{x^{3}}{9-x^{2}}
$$

As $x \rightarrow \pm \infty, y \approx \frac{x^{3}}{-x^{2}}=-x$ which gives only the slope of the oblique asymptote, but long division,

$$
\begin{array}{r}
\left.-x^{2}+9\right) \begin{array}{r}
\frac{-x}{x^{3}} \\
-x^{3}+9 x \\
9 x
\end{array}
\end{array}
$$

yields that $y=-x+\frac{9 x}{9-x^{2}}$ so the y-intercept of the asymptote is actually 0 .
$y^{\prime}=\frac{3 x^{2}\left(9-x^{2}\right)+2 x^{3} x}{\left(9-x^{2}\right)^{2}}=\frac{x^{2}\left(27-x^{2}\right)}{\left(9-x^{2}\right)^{2}}$, so $y^{\prime}=0$ if $x=0$ or $x= \pm \sqrt{27}= \pm 3 \sqrt{3}$, and y^{\prime} is undefined if $x= \pm 3$.
$y^{\prime \prime}=\frac{\left(54 x-4 x^{3}\right)\left(9-x^{2}\right)^{2}+4\left(27 x^{2}-x^{4}\right)\left(9-x^{2}\right) x}{\left(9-x^{2}\right)^{4}}=$
$\frac{\left(54 x-4 x^{3}\right)\left(9-x^{2}\right)+4\left(27 x^{2}-x^{4}\right) x}{\left(9-x^{2}\right)^{3}}=\frac{18 x^{3}+486 x}{\left(9-x^{2}\right)^{3}}=$ $\frac{18 x\left(x^{2}+27\right)}{\left(9-x^{2}\right)^{3}}$, so $y^{\prime \prime}=0$ if $x=0$, and $y^{\prime \prime}$ is undefined if $x= \pm 3$.

