Math 108
Spring 2024
Dr. Lily Yen

Quiz 5
Show all your work

Number:

Signature:

$$
\text { Score: __/ } 10
$$

Problem 1: Let the derivative of f be defined by $f^{\prime}(x)=(2 x+3) \overline{(x-1)^{2}}$.
a. Draw f^{\prime}.
b. List all intervals where the original function f is INCREASING.
c. List all inflection points of f.
d. List all intervals where the graph of f is concave DOWN.

f is increasing where $f^{\prime}(x)>0$ so on $\left(-\frac{3}{2}, \infty\right)$. And, yes, f is also increasing at $x=1$.
f has an inflection point where $f^{\prime \prime}(x)=0$. Since $f^{\prime \prime}(x)=$ $2(x-1)^{2}+(2 x+3) 2(x-1)=2((x-1)+(2 x+3))(x-1)=$ $2(3 x+2)(x-1)$, the inflection points are at $x=-\frac{2}{3}$ and at $x=1$.
f is concave down where $f^{\prime \prime}(x)<0$ so on $\left(-\frac{2}{3}, 1\right)$.

Score: /5
Problem 2: Draw the following function including all important features like local extrema, inflection point(s), and asymptotic behaviour. Remember to take appropriate limits to support your claim.

$$
y=\frac{x^{3}}{4-x^{2}}
$$

As $x \rightarrow \pm \infty, y \approx \frac{x^{3}}{-x^{2}}=-x$ which gives only the slope of the oblique asymptote, but long division,

$$
\left.-x^{2}+4\right) \begin{array}{r}
\frac{-x}{x^{3}} \\
\frac{-x^{3}+4 x}{4 x}
\end{array}
$$

yields that $y=-x+\frac{4 x}{4-x^{2}}$ so the y-intercept of the asymptote is actually 0 .
$y^{\prime}=\frac{3 x^{2}\left(4-x^{2}\right)+2 x^{3} x}{\left(4-x^{2}\right)^{2}}=\frac{x^{2}\left(12-x^{2}\right)}{\left(4-x^{2}\right)^{2}}$, so $y^{\prime}=0$ if $x=0$ or $x= \pm \sqrt{12}= \pm 2 \sqrt{3}$, and y^{\prime} is undefined if $x= \pm 2$.
$y^{\prime \prime}=\frac{\left(24 x-4 x^{3}\right)\left(4-x^{2}\right)^{2}+4\left(12 x^{2}-x^{4}\right)\left(4-x^{2}\right) x}{\left(4-x^{2}\right)^{4}}=$
$\frac{\left(24 x-4 x^{3}\right)\left(4-x^{2}\right)+4\left(12 x^{2}-x^{4}\right) x}{\left(4-x^{2}\right)^{3}}=\frac{8 x^{3}+96 x}{\left(4-x^{2}\right)^{3}}=$ $\frac{8 x\left(x^{2}+12\right)}{\left(4-x^{2}\right)^{3}}$, so $y^{\prime \prime}=0$ if $x=0$, and $y^{\prime \prime}$ is undefined if $x= \pm 2$.

