Name:

Math 108
Spring 2024
Dr. Lily Yen

Quiz Four
Show all your work

Number:
Signature:
Score:
_/ $/ 10$

Problem 1: The length of a rectangle is shrinking at a rate of $2 \overline{\mathrm{~cm} / \mathrm{min}}$ while the width of the rectangle is increasing at a rate of $1 \mathrm{~cm} / \mathrm{min}$. Find the rate at which the area of the rectangle changes when the length is 15 cm and the width is 10 cm .

Given: $x^{y} \quad \frac{d x}{d t}=-2, \frac{d y}{d t}=1$.
The area is $A=x y$, so $\frac{d A}{d t}=\frac{d x}{d t} y+x \frac{d y}{d t}$, so when $x=15$ and $y=10$,

$$
\frac{d A}{d t}=-2 \cdot 10+15 \cdot 1=-5 \mathrm{~cm}^{2} / \mathrm{min}
$$

So the area of the rectangle is decreasing at $5 \mathrm{~cm}^{2}$ per minute.

Score: $\quad / 3$
Problem 2: Use the technique of linear approximation to estimate $\sin (0.02)$ within 0.01 accuracy. State clearly your $f(x)$ and anchor point $a$ before applying Linear Approximation Formula. Draw the graph and specify the interval for $x$ around $x=a$ where accuracy is attained.
$f(x) \approx f(a)+f^{\prime}(a)(x-a)$. Here $a=0$ and $f(x)=\sin (x)$, so $f^{\prime}(x)=\cos (x)$ and

$$
\sin (x) \approx \sin (0)+\cos (0)(x-0)=x, \quad \text { so } \sin (0.02) \approx 0.02
$$




Score: /4
Problem 3: For the following function, find the absolute extrema over the specified interval and state where those values occur. Draw the function.

$$
f(x)=x^{2}-3 x^{2 / 3}, \quad x \in[0,2]
$$

$f^{\prime}(x)=2 x-3 \cdot \frac{2}{3} x^{-1 / 3}=2 x-2 x^{-1 / 3}=2\left(x-x^{-1 / 3}\right)$, so $f^{\prime}(x)$ is undefined when $x=0$, and $f^{\prime}(x)=0$ when $x=x^{-1 / 3}$, so $x^{3}=x^{-1}$, so $x^{4}=1$, so $x= \pm 1$. Since $x \in[0,2]$, that leaves $x=0$ and $x=1$ as the critical values. Evaluating at the critical values and the endpoints yields $f(0)=0, f(1)=-2$, and $f(2)=4-3(2)^{2 / 3} \approx-0.7622$. Therefore the absolute minimum is $(1,-2)$ and the absolute maximum is $(0,0)$.


Score: /3

