Name:

Math 108
Spring 2024
Dr. Lily Yen

Quiz 4
Show all your work

Number:
Signature:
Score: \qquad

Problem 1: The width of a rectangle is shrinking at a rate of $1 \mathrm{~cm} / \mathrm{min}$ while the length of the rectangle is increasing at a rate of $3 \mathrm{~cm} / \mathrm{min}$. Find the rate at which the area of the rectangle changes when the width is 12 cm and the length is 40 cm .

Given:

$$
x \quad y \quad \frac{d x}{d t}=3, \frac{d y}{d t}=-1
$$

The area is $A=x y$, so $\frac{d A}{d t}=\frac{d x}{d t} y+x \frac{d y}{d t}$, so when $x=40$ and $y=12$,

$$
\frac{d A}{d t}=3 \cdot 12+40 \cdot(-1)=-4 \mathrm{~cm}^{2} / \mathrm{min}
$$

So the area of the rectangle is decreasing at $4 \mathrm{~cm}^{2}$ per minute.

Score: $\quad / 3$
Problem 2: Use the technique of linear approximation to estimate $\cos (0.03)$ within 0.01 accuracy. State clearly your $f(x)$ and anchor point a before applying Linear Approximation Formula. Draw the graph and specify the interval for x around $x=a$ where accuracy is attained.
$f(x) \approx f(a)+f^{\prime}(a)(x-a)$. Here $a=0$ and $f(x)=\cos (x)$, so $f^{\prime}(x)=-\sin (x)$ and

$$
\cos (x) \approx \cos (0)-\sin (0)(x-0)=1, \quad \text { so } \cos (0.03) \approx 1
$$

$\begin{array}{ll}10 & 10 \\ 7 & \vdots \\ 7 & \vdots \\ \vdots & 0 \\ 1 & 0\end{array}$

Score: /4

Problem 3: For the following function, find the absolute extrema over the specified interval and state where those values occur. Draw the function.

$$
f(x)=2 x^{2}-5 x^{4 / 5}, \quad x \in[0,3]
$$

$f^{\prime}(x)=2 \cdot 2 x-5 \cdot \frac{4}{5} x^{-1 / 5}=4 x-4 x^{-1 / 5}=4(x-$ $\left.x^{-1 / 5}\right)$, so $f^{\prime}(x)$ is undefined when $x=0$, and $f^{\prime}(x)=0$ when $x=x^{-1 / 5}$, so $x^{5}=x^{-1}$, so $x^{6}=1$, so $x= \pm 1$. Since $x \in[0,3]$, that leaves $x=0$ and $x=1$ as the critical values. Evaluating at the critical values and the endpoints yields $f(0)=0, f(1)=-3$, and $f(3)=$ $18-5(3)^{4 / 5} \approx 5.959$. Therefore the absolute minimum is $(1,-3)$ and the absolute maximum is $(3,5.959)$.

Score: /3

