
		Name:	
Stat 101 Summer 2023 Session 1 Dr. Lily Yen	Activity 4-1 Show all your work	Number:	
		Signature:	
v		Score:	/7

State all Excel functions used.

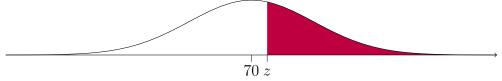
Problem 1: Below is a normal curve. Mark on the horizontal axis, the mean μ , and 3 standard deviations on each side of the mean. How many percent of data is captured within one standard deviation from the mean? Two standard deviations? Three?

Score: /1 **Problem 2**: On the normal curve given below, mark on the horizontal axis its mean, $\mu = 40$, and standard deviation, $\sigma = 10$. Shade the region whose area equals $P(X \le 45)$. Find the probability on Excel accurate to 6 decimal places.

NORM.DIST $(45, 40, 10, TRUE) \approx 0.691462$.

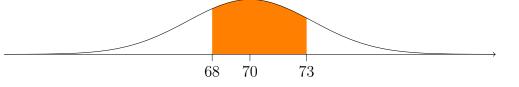

Problem 3: Shade on the standard normal curve the probability $P(-0.2 < X \le 0.3)$. Find it to 6-decimal place accuracy on Excel.

NORM.S.DIST(0.3, TRUE)-NORM.S.DIST $(-0.2, TRUE) \approx 0.197171$.


Score: /1

Problem 4: Below is a standard normal curve. Find z accurate to 6 decimal places such

Score: /1


Problem 5: Find the cutoff height in inches for the upper 40% of men in the States. Namely, find z such that $P(X \ge z) = 0.4$ given $\mu = 70$ and $\sigma = 3.3$ both in inches. Provide z to 6 decimal places.

Since z that marks the upper 40% is the same as marking the lower 60%, one can use NORM.INV(0.6, 70, 3.3) \approx 70.836045.

Score: /1

Problem 6: Find the probability of US men with heights between 68 inches and 73 inches, using the same $\mu = 70$ and $\sigma = 3.3$ both in inches. Provide a 6-place accuracy.

NORM.DIST(73, 70, 3.3, TRUE)-NORM.DIST(68, 70, 3.3, TRUE) ≈ 0.54611168