Chapter 3 answers

Section 2.4-2.7Problems 3.2, 3.3, 3.4

1. a) (i) From calculator: $\bar{x}=270.125$; mean sale price $=\$ 270,125$
(ii) From calculator: $s \approx 155.8400622$; sale price $\mathrm{SD} \approx \$ 155,840$
b) Position of $Q_{3}: 0.75(8)=6$; take average of $6^{\text {th }}+7^{\text {th }}$ item

Value of $\mathrm{Q}_{3}=(320+350) / 2=335$ or $\$ 335,000$
(same answer whether using above "classroom method" or TI-83 value for Q_{3})
c) Position of $\mathrm{P}_{30}=0.30(8)=2.4$, or $3^{\text {rd }}$ item

Value of $\mathrm{P}_{30}=157$ or $\$ 157,000$
2. a) Mean $\bar{x}=\frac{\sum(x \cdot f)}{n}=\frac{31}{40}=0.775$; i.e., mean $\approx 0.8 \mathrm{cups}$
b) Median $\quad \tilde{x}=$ average of $20^{\text {th }} \& 21^{\text {st }}$ items $=0$ cups
c) $s \approx 1.349$ (from calculator); ie., $\mathrm{SD} \approx 1.3$ cups
3. a) Mean $\bar{x}=\frac{\sum(x \cdot f)}{n}$; using the class marks $(2.5,5.0,7.5,10)$ for x, $\bar{x}=6.9375$ (from calculator); i.e., $\bar{x} \approx 6.9$ hours
b) $s \approx 1.649349133$ (from calculator)

$$
\text { variance }=s^{2} \approx 1.649349^{2} \approx 2.72035 ; \text { i.e., } s^{2} \approx 2.7 \text { hours }^{2}
$$

4. a) $\$ 400,000$
b) Q_{1} of final prices $\approx \$ 150,000$
c) $\mathrm{SD} \approx \frac{\text { Range }}{4}=\frac{\max -\min }{4}=\frac{1300-200}{4}=275$; i.e., $s \approx \$ 275,000$
5. Standard score $=z=\frac{x-\bar{x}}{s}=\frac{14-16.5}{2}=-1.25$
6. $n=10$; median is average of $5^{\text {th }}$ and $6^{\text {th }}$ item; $\tilde{x}=\frac{1800+2200}{2}=\$ 2000$
7. a) $\bar{x}=\frac{\sum x}{n}=\frac{24}{6}=4$ goals
b) (i) $\sum x^{2}=11^{2}+4^{2}+6^{2}+0^{2}+0^{2}+3^{2}=182$
(ii) $\left(\sum x\right)^{2}=24^{2}=576$
(iii) $\Sigma(x-\bar{x})=0$ (this is always true for any data set)
c) \quad Variance $=\frac{\sum(x-\bar{x})^{2}}{n-1}=\frac{7^{2}+0^{2}+2^{2}+(-4)^{2}+(-4)^{2}+(-1)^{2}}{5}=17.2$

$$
\mathrm{SD}=\sqrt{\text { variance }}=\sqrt{17.2} \approx 4.1 \text { goals }
$$

or, from calculator, $s \approx 4.1$ goals
8. a) modc $=0$ passengers
b) median $\tilde{x}=1$ passenger
c) From calculator, $\bar{x}=1.18$; i.e., mean ≈ 1.2 passengers
d) From calculator, $\mathrm{s} \approx 1.172647$; i.e., $\mathrm{SD} \approx 1.2$ passengers
9. $\mathrm{SD} \approx \frac{\text { Range }}{4}=\frac{\max -\min }{4} \approx \frac{10-2}{4}=2$ hours
(Answers may vary; I'm guessing that the "longest sleep" and "shortest sleep" were approximately 10 and 2 hours, respectively.)
10. a) Minimum $=\$ 42,500$
first quartile $\mathrm{Q}_{1}=\$ 47,600 \quad$ median $\tilde{x}=\$ 53,500$; third quartile $\mathrm{Q}_{3}=\$ 62,000$
maximum $=\$ 102,800$
b)

c) $\quad \mathrm{Q}_{3}-\mathrm{Q}_{\mathrm{I}}=\$ 14,400$
d) $Q_{3}=\$ 62,000$

Note: The above quartile calculations were done using the "classroom method". If the TI-83 is used for the quartile calculations, the results differ slightly: $\mathrm{Q}_{1}=\$ 47,300$; $\mathrm{Q}_{3}=\$ 62,900$; the boxplot will not be noticeably affected.)
11. a) $z=\frac{x-\bar{x}}{s}=\frac{65-70}{10}=-0.5$
b) $z=\frac{455-500}{80}=-0.5625$

Conclusion: The first score (-0.5) is a better score because it is higher relative to the other scores. (This assumes that "high" scores are "good" scores.)
12. a) Position of $\mathrm{P}_{70}=0.70(10)=7$; i.e., average of $7^{\text {th }}+8^{\text {th }}$ item

Value of $P_{70}=\frac{10.78+10.79}{2}=10.785 \mathrm{sec}$.
b) Position of $\mathrm{Q}_{1}=.25(10)=2.5$; take $3^{\text {rd }}$ item.

Value of $\mathrm{Q}_{1}=10.73 \mathrm{sec}$.
13. a) $\tilde{x}=10.6 \mathrm{sec}$. Actually 11.6 s
b) (Note: "Faster" means "lower" times!) $Q_{3} \approx 10.5 \mathrm{sec}$.

Actually Q3 $=11.5 \mathrm{~s}$
$\begin{array}{lll}14 . ~ a) ~ \\ \bar{x}=1.9 \% & \text { b) } \tilde{x}=1.9 \% & \text { c) } s \approx 0.47 \%\end{array}$
15. mean $\bar{x}=1.45$ or $\approx 1.5 \mathrm{cups}$
median $\tilde{x}=1$ cup
mode $=0$ cups
SD $s \approx 1.38300$ or ≈ 1.4 cups
16. Using the class marks for each class as $x(18,21,24,27)$:
a) mean $\bar{x}=21.75$ or ≈ 21.8 years
b) variance $s^{2} \approx(2.941742)^{2} \approx 8.7$ years 2
c) $\mathrm{SD} s \approx 2.94$ or ≈ 2.9 years
17. σ
18. It is the "balancing point" of the histogram that describes the distribution of values.
19. The deviations $(x-\bar{x})$ of the 3 values were $8,-4,-4$.
$\mathrm{SD}=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}=\sqrt{\frac{8^{2}+(-4)^{2}+(-4)^{2}}{2}}=\sqrt{\frac{64+16+16}{2}} \approx 6.9 \mathrm{~min}$.
20. a) $\frac{3}{4}=1-\frac{1}{4}=1-\frac{1}{2^{2}}=1-\frac{1}{k^{2}}$; here, $k=2$
at least $3 / 4$ of the date lies within 2 SD's of the mean; i.c., between $\bar{x}-2 s$ and $\bar{x}+2 s$, or $62-2(6)$ and $62+2(6)$ or between 50 and 74.
b) minimum $\approx \bar{x}-2 s=50 \quad$ maximum $\approx \bar{x}+2 s=74$
c) $z=\frac{x-\bar{x}}{s}=\frac{80-62}{6}=3$

This is considered to be "unusual" since it is >2.
21. a) $\bar{x}=9 ; \tilde{x}=9$; the modes are 7 and 10 (bimodal!)
b) position of $\mathrm{Q}_{1}=.25(9)=2.25$; i.e., take $3^{\text {rd }}$ value

Value of $\mathrm{Q}_{1}=7$
c) $s \approx 3.4641016$ or $s \approx 3.5$ (from calculator)
22. a) $\operatorname{Mean} \bar{x}=5$

$$
\begin{aligned}
\text { Mean deviation }= & \frac{\sum|x-\bar{x}|}{n}=\frac{|6-5|+|3-5|+|7-5|+|7-5|+|4-5|+|5-5|}{5} \\
& =\frac{1+2+2+1+0}{5}=\frac{6}{5}=1.2
\end{aligned}
$$

b) \quad Variance $=\frac{\sum(x-\bar{x})^{2}}{n-1}=\frac{1^{2}+(-2)^{2}+2^{2}+(-1)^{2}+(0)^{2}}{4}=2.5$
c) $\quad s=\sqrt{s^{2}}=\sqrt{2.5} \approx 1.58114 \approx 1.6$
23. a) Class width $=5$ years
b) $\quad \bar{x} \approx 22$ years (Using Calculator: 1-Var Stats $\mathrm{L}_{1}, \mathrm{~L}_{2}$)
c) For a grouped frequency table, we do not know the actual data values. We have replaced all the values in a class by the appropriate class mark, which may not equal the actual data values. Hence, the calculated mean may not be the actual mean.
d) $s=\sqrt{\frac{\sum\left[(x-\bar{x})^{2} \cdot f\right]}{n-1}}=\sqrt{\frac{(12-22)^{2}(2)+(17-22)^{2}+(22-22)^{2}(3)+(27-22)^{2}(5)}{10}}$
$=\sqrt{35} \approx 5.9$ years
24. a) (i) $\bar{x}=\$ 393,583$
(ii) $s \approx \$ 25,969$
b) $\quad \mathrm{Q}_{1}=\$ 376,250$
c) $\mathrm{P}_{70}=\$ 410,000$
d) $s \approx \frac{\text { Range }}{4}=\frac{\max -\min }{4}=\frac{2,388,888-357,000}{4}=\$ 507,972$
25. a) mode $=5 \mathrm{BR}$
b) $\quad \tilde{x}=\frac{4+5}{2}=4.5 \mathrm{BR}$
c) $\bar{x}=4.30556$ or $\approx 4.3 \mathrm{BR}$
26. a) $\bar{x}=65.7$ strokes
b) $\quad \tilde{x}=66$ strokes
c) $s \approx 1.1188 \approx 1.1$ strokes
d) Sum of the squares $=\Sigma\left(x^{2} f\right)=63^{2}(1)+64^{2}(4)+65^{2}(6)+66^{2}(11)+67^{2}(8)=129,531$
e) Since $s^{2}=\frac{\sum(x-\bar{x})^{2}}{n-1}$, the sum of the squares of the deviations is $\sum(x-\bar{x})^{2}=s^{2}(n-1) \approx 1.1188^{2}(29) \approx 36.3$
27. Eric's standard score $z=\frac{x-\bar{x}}{5}=\frac{88-72}{12}=1.3$

Andrea did better, because her standard score (1.5) was higher.
28.
(a) $\bar{x} \approx 12.6$ goals
(b) $\tilde{x}=11.5$ goals
(c) $s \approx 5.9$ goals
29. Probably the "PIM" data, since it seems to have the largest range (max-min) of the data sets, and $s \approx$ Range/4.
30. Total scores $=7(15)+11=116$

Average score $=\bar{x}=\frac{\text { Total }}{8}=\frac{116}{8}=14.5$ points
31. a) $\bar{x}=\frac{\sum x}{n}$ or $\frac{\sum(x f)}{n}=\frac{0(5)+1(13)+2(12)+3(10)}{40}=\frac{67}{40}=1.675 \approx 1.7$ cards
b) $\quad \tilde{x}=2$ cards
c) $\operatorname{mode}=1$ card
d) $\mathrm{SD}=s$

$$
\begin{aligned}
& =\sqrt{\frac{\sum(x-x)^{2} f}{n-1}} \approx \sqrt{\frac{(0-1.675)^{2}(5)+(1-1.675)^{2}(13)+(2-1.675)^{2}(12)+(3-1.675)^{2}}{39}} \\
& \approx 0.997111 \approx 1.0 \mathrm{cards}
\end{aligned}
$$

32. $\mathrm{SD} \approx \frac{\text { Range }}{4}=\frac{\max -\min }{4}=\frac{20-4}{4}=4$
(Answers may vary; I guessed that the max and min quiz scores would be 20 and 4, respectively.)
33. a) $\bar{x}=11$ hours
b) $s \approx 5.6$ hours
34. a)
(i) $\bar{x}=\$ 557.50$
(ii) $\tilde{x}=\$ 545$
(iii) $\mathrm{M}=\$ 500$
(iv) $\mathrm{MR}=\$ 550$
b) No change in median and mode; new mean is $\$ 574.20$ (up by $\$ 16.70$)
new MR $=\$ 625$ (up by $\$ 75$)
The MR changes most.
35. a) Location of $P_{60}=0.60(15)=9$; take average of $9^{\text {th }}+10^{\text {th }}$ item

Value of $\mathrm{P}_{60}=\frac{104+105}{2}=\$ 104.50$
b) Location of $\mathrm{P}_{35}=0.35(15)=5.25$; take $6^{\text {th }}$ item

Value of $\mathrm{P}_{35}=\$ 89$
36. $z=\frac{x-\bar{x}}{5}=\frac{1.2-2.5}{0.5}=-2.6$
37. a) min $=1 \mathrm{pt}$; first quartile $\mathrm{Q}_{1}=9 \mathrm{pts}$; median $\tilde{x}=25 \mathrm{pts}$; third quartile $\mathrm{Q}_{3}=36 \mathrm{pts}$;
$\max =90 \mathrm{pts}$
b) skewed right
c) Expect the mean to be greater than the median

38. a) Total $=0(12)+1(2)+2(3)+3(2)+4(1)=18$
b) Mean $=\bar{x}=\frac{\sum x}{n}=\frac{18}{20}=0.9$ days
c) Median = 0 days
39. a) Mean $=\bar{x}=16.5$
b) Median $\tilde{x}=\frac{14+17}{2}=15.5$
c) Modes are 13 and 22
d) $s \approx 5.5$
e) $\quad Q_{1}=13 ; Q_{3}=22$
f)

40. a) 332 is $\frac{332-370}{19}=-2$, or 2 SD's below the mean 408 is $\frac{408-370}{19}=+2$, or 2 SD's above the mean.
i.e., between 332 and 408 is within 2 SD's of the mean; Chebyshev says that at least $\left(1-\frac{1}{2^{2}}\right) 100 \%=75 \%$ of the data lies in that interval.
b) 408
41. a) (i) Range $\approx 40-21=19$, or $\$ 19,000$
(ii) Midrange $=\frac{\max +\min }{2} \approx \frac{40+21}{2}=30.5$, or $\$ 30,500$
b) (i) mean $\bar{x}=32$, or $\$ 32,000$
(ii) $\mathrm{SD}, s \approx 3.57192$, or $\approx \$ 3572$
c) The range and the standard derivation.
42. a)
(i) $\mathrm{P}_{80}=\frac{26.1+35.8}{2}=30.95$, or $\approx \$ 30.95$ million
(ii) $\mathrm{Q}_{3}=7.6$ or $\$ 7.6$ million
b) $\mathrm{Q}_{3}=87.9$ or $\$ 87.9$ million
43. Between 2.4 and 4.4 is with 1 kg of the mean; i.e., within 2 SD's of the mean. For a bell-shape histogram, approximately 95% of the data is with 2 SD's of the mean. (68-95-99 Rule, or Empirical Rule)
44. a) $z=\frac{x-\bar{x}}{s}=\frac{227-180}{35} \approx 1.34$
b) $z=\frac{418-350}{50} \approx 1.36 \quad$ Conclusion: The sccond score has a better z score.
45. a) $\quad P_{40}=\frac{109.99+119.99}{2}=114.99$
b) $\mathrm{P}_{65}=139.99$
46. minimum $=407 ; \quad \mathrm{Q}_{1}=458 ; \quad \tilde{x}=504 ; \quad \mathrm{Q}_{3}=548 ; \quad$ maximum $=755$

47. a) The four given numbers are deviations from the mean, $(x-\bar{x})$;
$11.50,-3.35,-5.20,1.10$. These add to 4.05 .
Since, for any data set, $\sum(x-\bar{x})=0$, the fifth deviation must be -4.05 .
Therefore, Jason's costs were below average by $\$ 4.05$.
b) $s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}=\sqrt{\frac{(11.5)^{2}+(-3.35)^{2}+(-5.20)^{2}+(1.10)^{2}+(-4.05)^{2}}{4}} \approx \$ 6.86$
48. a) Sum of all deviations must equal 0 ; missing deviation $=8$
b) \quad Variance $=\frac{\sum(x-\bar{x})^{2}}{n-1}=\frac{(-2)^{2}+5^{2}+(-7)^{2}+(-4)^{2}+(8)^{2}}{4}=39.5$
49. a) modal response $=$ "not very"
b) median response $=$ "somewhat"
50. Total of 11 quizzes $=11(14)=154$

Total of "best 10 " $=\quad 154-8=146$
Mean of "best $10 "=\quad 146 / 10=14.6$
51. a) Mean $=\frac{\sum x}{n}=\frac{\sum(x f)}{n}=\frac{0(11)+1(8)+2(4)+3(2)}{25}=\frac{22}{25}=0.88$ pass. or ≈ 0.9 pass.
b) Median $\tilde{x}=1$ pass.
c) Mode $\mathrm{M}=0$ pass.
d) $\mathrm{SD}=\sqrt{\frac{\sum(x-x)^{2} f}{n-1}}=\sqrt{\frac{(0-.88)^{2}(11)+(1-.88)^{2}(8)+(2-.88)^{2}(4)+(3-.88)^{2}(2)}{24}}$ ≈ 0.97 passengers or ≈ 1.0 pass.
52. a) $\bar{x} \approx 11.5 \mathrm{sec}$.
b) $s \approx 0.5166759 \approx 0.5 \mathrm{sec}$.
53. a) $\bar{x}=20.8$ years
b) $\tilde{x}=21$ years
c) Modes are 18 and 22 yrs.
d) $s \approx 2.780887 \approx 2.8$ years
e) Variance $=s^{2} \approx 2.780887^{2} \approx 7.7$ years 2
f) $\mathrm{Q}_{1}=18 ; \mathrm{Q}_{3}=23$; Interquartile range $=\mathrm{Q}_{3}-\mathrm{Q}_{1}=5$ years
g) Range $=8$ years
h) $\min =17 ; \quad \mathrm{Q}_{\mathrm{I}}=18 ; \quad \tilde{x}=21 ; \quad \mathrm{Q}_{3}=23 ; \quad \max =25$

54. a) $\frac{8}{9}=1-\frac{1}{9}=1-\frac{1}{3^{2}}$; at least $\frac{8}{9}$ of the salaries are within 3 SD's of the mean;
i.e., between $\bar{x}-3 s$ and $\bar{x}+3 s$; i.e., between $\$ 47,700$ and $\$ 67,500$.
b) $\$ 48,000$ is more than 2 SD's below the mean ($\bar{x}-2 s=51,000$); it is unusually low.
55. a) 10
b) 60
c) The ranges of values are approximately equal (≈ 105) for both teams; however, for the Maple Leafs, 50% of the data (between Q_{1} and Q_{3}) lies very close to the median; for the Canucks, the middle 50% of the data is much more spread out; I could expect the SD for the Canucks team to be higher.
56. a) (i) $\bar{x}=2.55 \approx 2.6$ courses
b) $s=1.197219 \approx 1.2$ courses.
57. a) $\mathrm{P}_{80}=\frac{240+240}{2}=\$ 240$
b) $\quad \mathrm{P}_{30}=\$ 139$
58. a) $x=\bar{x}+2.5=2.5-1.4(0.5)=1.8 \mathrm{~kg}$.
b) $z=1.4$ means 1.4 SD's below the mean. This is not considered to be unusually low.

