Worked examples on distributions of continuous random variables

Lily Yen

Due February 16th, 2015

Example 1 The time spent by a randomly selected internet user who uses an internet service provider has a gamma distribution with mean $20 \,\mathrm{min}$ and variance $80 \,\mathrm{min}^2$.

- 1. What are the values of the parameters α and β ?
- 2. What is the probability that a user spends at most 25 min connected to the internet?
- 3. What percentage of users spend between 15 and 30 min connected to the internet?
- **Solution 1.** 1. For the gamma distribution, $\mu = \alpha\beta$ and $\sigma^2 = \alpha\beta^2$. Therefore $\frac{\sigma^2}{\mu} = \frac{\alpha\beta^2}{\alpha\beta} = \beta$. In the present case, $\beta = \frac{80\,\mathrm{min}^2}{20\,\mathrm{min}} = 4.0\,\mathrm{min}$ and $\alpha = \frac{\mu}{\beta} = \frac{20\,\mathrm{min}}{4.0\,\mathrm{min}} = 5.0$.
 - 2. The pdf for the gamma distribution is $f(x; \alpha, \beta) = \frac{1}{\beta^{\alpha}\Gamma(\alpha)}x^{\alpha-1}e^{-x/\beta}$ (x > 0). If the present case

$$f(x; 5, 4) = \frac{1}{4^5(5-1)!}x^4e^{-x/4} = \frac{1}{24576}x^4e^{-x/4}.$$

The desired probability is then

$$\int_0^{25} \frac{1}{24576} x^4 e^{-x/4} \, dx \approx 0.747.$$

(On a TI83/84, fnInt($x^4 \times e^{-x/4} \div 24576, x, 0, 25$), where you type MATH 9:fnInt to get started.)

3. As in the previous part, the desired probability is

$$\int_{15}^{30} \frac{1}{24576} x^4 e^{-x/4} \, dx \approx 0.545.$$

Example 2 A certain type of saw blade used in a sawmill has a lifetime in hours that has a Weibull distribution with $\alpha = 2$ and $\beta = 10$ h.

- 1. What is the probability that the blade fails in less than 8 hours of use?
- 2. What is the expected lifetime of this type of blade?

Sion 2. 1. The cdf is $F(x; \alpha, \beta) = 1 - e^{-(x/\beta)^{\alpha}}$ (if x > 0), so in the present case $F(8 \text{ h}; 2, 10 \text{ h}) = 1 - e^{-(8/10)^2} = 1 - e^{-16/25} = 0.473$.

2. $\int_0^\infty x \cdot F(x; 2, 10) dx = \int_0^\infty x \cdot \frac{2}{10^2} x^{2-1} e^{-(x/10)^2} dx = \int_0^\infty \frac{1}{50} x^2 e^{-x^2/100} dx = 8.86 \,\text{h}$, where you can use your TI83/84's fnInt function for the last step.

Example 3 1. A die is rolled 50 times. What is the probability that the average of the 50 rolls is between 3.0 and 3.5?

2. A die is rolled 100 times. What is the probability that the average of the 100 rolls is between 3.0 and 3.5?

Solution 3. When rolling a die, the mean is $\mu = \sum_{i=1}^{6} i \cdot \frac{1}{6} = \frac{7}{2}$, and the variance is $\sigma^2 = \sum_{i=1}^6 (i - \mu)^2 \cdot \frac{1}{6} = \frac{35}{12}$, so the standard deviation is $\sigma = \frac{\sqrt{105}}{6}$. When rolling n dice the mean is then $\mu = \frac{7}{2}$ and the standard deviation is

 $\frac{\sigma}{\sqrt{n}}$.

You can now approximate with a normal distribution.

1. normalcdf $(3, 3.5, 7/2, \frac{\sqrt{105}}{6\sqrt{50}}) = 0.481.$

You get a better approximation if you use the following continuity correction: normalcdf $(3 - \frac{1}{100}, 3.5 + \frac{1}{100}, 7/2, \frac{\sqrt{105}}{6\sqrt{50}}) = 0.499.$

2. Similarly, normalcdf $(3, 3.5, 7/2, \frac{\sqrt{105}}{6\sqrt{100}}) = 0.498$.

With the continuity correction: normalcdf $(3-\frac{1}{200},3.5+\frac{1}{200},7/2,\frac{\sqrt{105}}{6\sqrt{100}})=$ 0.510.

Example 4 Suppose that the average annual income of all fully employed Canadian females between the ages of 30 and 40 is \$40 000, and that the standard deviation of these incomes is \$10 000. A random sample of 400 is drawn from this population.

- 1. What is the probability that the sample average is (a) at most \$41 000? (b) within \$800 of the population mean?
- 2. What value would the sample mean exceed 90% of the time?
- 3. What symmetric interval about the population mean would the sample mean fall in 75% of the time?
- 4. For 95% of the time, you would expect the population mean to be no more than a certain amount different from the sample mean. Find the amount.

Solution 4. Here $\mu = 40\,000$ and $\sigma = 10\,000/\sqrt{400} = 500$.

- 1. (a) normalcdf $(-\infty, 41\,000, 40\,000, 500) = 0.977$. (Whether you use $-\infty, -10^{99}$, or 0 as the left endpoint makes no difference to the first (at least) 500 digits of this probability.)
 - (b) $\operatorname{normalcdf}(39200, 40800, 40000, 500) = 0.890.$
- 2. Since invNorm $(0.10, 40\,000, 500) = \$39\,359.22$, the sample mean would be less than this amount 10% of the time and therefore exceed it 90% of the time.
- 3. Since

$$invNorm(0.125, 40\,000, 500) = $39\,424.83$$

and

$$invNorm(0.875, 40\,000, 500) = $40\,575.17,$$

the sample mean is in the interval [\$39424.83, \$40575.17] 75% of the time. (Notice that this interval is symmetric about \$40000 because the normal distribution is symmetric about the mean.)

4. Using the symmetry of the normal distribution again, the sample mean would be larger than $invNorm(0.975, 40\,000, 500) = \$40\,979.98\,2.5\%$ of the time (and smaller than $invNorm(0.025, 40\,000, 500) = \$39\,020.02$ another 2.5% of the time). Therefore the sample mean differs from the mean by at least $\$40\,979.98 - \$40\,000 = \$979.98\,95\%$ of the time.